Measurement report: Effects of anthropogenic emissions and environmental factors on the formation of biogenic secondary organic aerosol (BSOA) in a coastal city of southeastern China

<p>To better understand the formation of biogenic secondary organic aerosol (BSOA), aerosol samples with a 4 h time resolution were collected during summer and winter in the southeast of China, along with online measurements of trace gases, aerosol chemical compositions, and meteorological par...

Full description

Bibliographic Details
Main Authors: Y. Hong, X. Xu, D. Liao, T. Liu, X. Ji, K. Xu, C. Liao, T. Wang, C. Lin, J. Chen
Format: Article
Language:English
Published: Copernicus Publications 2022-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/7827/2022/acp-22-7827-2022.pdf
Description
Summary:<p>To better understand the formation of biogenic secondary organic aerosol (BSOA), aerosol samples with a 4 h time resolution were collected during summer and winter in the southeast of China, along with online measurements of trace gases, aerosol chemical compositions, and meteorological parameters. The samples were analyzed by gas chromatography–mass spectrometry for PM<span class="inline-formula"><sub>2.5</sub></span>-bound secondary organic aerosol (SOA) tracers, including isoprene (SOA<span class="inline-formula"><sub>I</sub></span>), <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">α</mi><mo>/</mo><mi mathvariant="italic">β</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="3dc8de5029bb49ec963cf9c880fd1113"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-7827-2022-ie00001.svg" width="23pt" height="14pt" src="acp-22-7827-2022-ie00001.png"/></svg:svg></span></span>-pinene (SOA<span class="inline-formula"><sub>M</sub></span>), <span class="inline-formula"><i>β</i></span>-caryophyllene (SOA<span class="inline-formula"><sub>C</sub></span>), and toluene (ASOA). The average concentrations of total SOA tracers in winter and summer were 38.8 and 111.9 ng m<span class="inline-formula"><sup>−3</sup></span>, respectively, with the predominance of SOA<span class="inline-formula"><sub>M</sub></span> (70.1 % and 45.8 %), followed by SOA<span class="inline-formula"><sub>I</sub></span> (14.0 % and 45.6 %), ASOA (11.0 % and 6.2 %) and SOA<span class="inline-formula"><sub>C</sub></span> (4.9 % and 2.3 %). Compared to those in winter, the majority of BSOA tracers in summer showed significant positive correlations with O<span class="inline-formula"><sub><i>x</i></sub></span> (O<span class="inline-formula"><sub>3</sub>+</span>NO<span class="inline-formula"><sub>2</sub></span>) (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.443–0.808), HONO (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.299–0.601), ultraviolet (UV) (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.382–0.588) and temperature (<span class="inline-formula"><i>T</i></span>) (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.529–0.852), indicating the influence of photochemical oxidation under relatively clean conditions. However, in winter, BSOA tracers were significantly correlated with PM<span class="inline-formula"><sub>2.5</sub></span> (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.407–0.867), NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d96e0e0e6a6172a7d34ac185b1d0a8a7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-7827-2022-ie00002.svg" width="9pt" height="16pt" src="acp-22-7827-2022-ie00002.png"/></svg:svg></span></span> (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.416–0.884), SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M29" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="29af680a2c2c3e13b3242191be5b1002"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-7827-2022-ie00003.svg" width="13pt" height="17pt" src="acp-22-7827-2022-ie00003.png"/></svg:svg></span></span> (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.419–0.813), and NH<span class="inline-formula"><sub>3</sub></span> (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.440–0.757), attributed to the contributions of anthropogenic emissions. Major BSOA tracers in both seasons were linearly correlated with aerosol acidity (pH) (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.421–0.752), liquid water content (LWC) (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.403–0.876) and SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="43551dd6939ff027a946c13e8be02135"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-7827-2022-ie00004.svg" width="13pt" height="17pt" src="acp-22-7827-2022-ie00004.png"/></svg:svg></span></span> (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.419–0.813). The results indicated that acid-catalyzed reactive uptake onto sulfate aerosol particles enhanced the formation of BSOA. In summer, the clean air mass originated from the ocean, and chlorine depletion was observed. We also found that concentrations of the total SOA tracers were correlated with HCl (<span class="inline-formula"><i>R</i><sup>2</sup>=0</span>.545) and chlorine ions (<span class="inline-formula"><i>r</i></span> <span class="inline-formula">=</span> 0.280–0.639) in PM<span class="inline-formula"><sub>2.5</sub></span>, reflecting the contribution of Cl-initiated volatile organic compound (VOC) oxidations to the formation of SOA. In winter, the northeast dominant wind direction brought continental polluted air mass to the monitoring site, affecting the transformation of BSOA tracers. This implied that anthropogenic emissions, atmospheric oxidation capacity and halogen chemistry have significant effects on the formation of BSOA in the southeast coastal area.</p>
ISSN:1680-7316
1680-7324