Universal Behavior of the Coulomb-Coupled Fermionic Thermal Diode

We propose a minimal model of a Coulomb-coupled fermionic quantum dot thermal diode that can act as an efficient thermal switch and exhibit complete rectification behavior, even in the presence of a small temperature gradient. Using two well-defined dimensionless system parameters, universal charact...

Full description

Bibliographic Details
Main Authors: Shuvadip Ghosh, Nikhil Gupt, Arnab Ghosh
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/12/1810
Description
Summary:We propose a minimal model of a Coulomb-coupled fermionic quantum dot thermal diode that can act as an efficient thermal switch and exhibit complete rectification behavior, even in the presence of a small temperature gradient. Using two well-defined dimensionless system parameters, universal characteristics of the optimal heat current conditions are identified. It is shown to be independent of any system parameter and is obtained only at the mean transitions point “−0.5”, associated with the equilibrium distribution of the two fermionic reservoirs, tacitly referred to as “<i>universal magic mean</i>”.
ISSN:1099-4300