Quantitative trait loci associated with straighthead-resistance used for marker assisted selection in rice (Oryza sativa L.) RIL populations

Straighthead is a physiological disorder of rice (Oryza sativa L.) that causes dramatic yield loss in susceptible cultivars. This disorder is found worldwide and is reported to increasingly occur in the southern United States. Genetic resistance breeding has been considered as one of the most effici...

Full description

Bibliographic Details
Main Authors: Xuhao Pan, Yiting Li, Xiaobai Li
Format: Article
Language:English
Published: PeerJ Inc. 2023-03-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/14866.pdf
Description
Summary:Straighthead is a physiological disorder of rice (Oryza sativa L.) that causes dramatic yield loss in susceptible cultivars. This disorder is found worldwide and is reported to increasingly occur in the southern United States. Genetic resistance breeding has been considered as one of the most efficient methods for straighthead prevention because the traditional prevention method wastes water and costs labor. In this study, we analyzed the genetic effects of five straighthead quantitative trait loci (QTLs), namely, AP3858-1 (qSH-8), RM225 (qSH-6), RM2 (qSH-7), RM206 (qSH-11), and RM282 (qSH-3), on the recombinant inbred lines (RILs) developed from Jing185/Cocodrie and Zhe733/R312 populations using our five previously identified markers linked to these QTLs. As a result, recombinant inbred lines (RILs) with four resistant alleles at the four loci (AP3858-1, RM225, RM2, and RM206) exhibited the highest straighthead resistance. This result suggests that the four markers could be efficiently used to select the straighthead-resistant recombinant inbred lines (RILs). Furthermore, by using AP3858-1, we successfully obtained five straighthead-resistant recombinant inbred lines (RILs) with more than 50% genetic similarity to Cocodrie. These markers and recombinant inbred lines (RILs) can be used for future straighthead resistance breeding through marker-assisted selection.
ISSN:2167-8359