Meta Learning Approach to Phone Duration Modeling

One of the essential prerequisites for achieving the naturalness of synthesized speech is the possibility of the automatic prediction of phone duration, due to the high importance of segmental duration in speech perception. In this paper we present a new phone duration prediction model for the Serbi...

Full description

Bibliographic Details
Main Authors: Sandra Sovilj-Nikić, Ivan Sovilj-Nikić, Maja Marković
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2018-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/298283
Description
Summary:One of the essential prerequisites for achieving the naturalness of synthesized speech is the possibility of the automatic prediction of phone duration, due to the high importance of segmental duration in speech perception. In this paper we present a new phone duration prediction model for the Serbian language using meta learning approach. Based on the data obtained from the analysis of a large speech database, we used a feature set of 21 parameters describing phones and their contexts. These include attributes related to the segmental identity, manner of articulation (for consonants), attributes related to phonological context, such as segment types and voicing values of neighboring phones, presence or absence of lexical stress, morphological attributes, such as part-of-speech, and prosodic attributes, such as phonological word length, the position of the segment in the syllable, the position of the syllable in a word, the position of a word in a phrase, phrase break level, etc. Phone duration model obtained using meta learning algorithm outperformed the best individual model by approximately 2,0% and 1,7% in terms of the relative reduction of the root-mean-squared error and the mean absolute error, respectively.
ISSN:1330-3651
1848-6339