Mathematical Modeling of Ultracold Few-Body Processes in Atomic Traps
We discuss computational aspects of the developed mathematical models for ultracold few-body processes in atomic traps. The key element of the elaborated computational schemes is a nondirect product discrete variable representation (npDVR) we have suggested and applied to the time-dependent and stat...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2016-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/epjconf/201610801008 |
Summary: | We discuss computational aspects of the developed mathematical models for ultracold few-body processes in atomic traps. The key element of the elaborated computational schemes is a nondirect product discrete variable representation (npDVR) we have suggested and applied to the time-dependent and stationary Schrödinger equations with a few spatial variables. It turned out that this approach is very effcient in quantitative analysis of low-dimensional ultracold few-body systems arising in confined geometry of atomic traps. The effciency of the method is demonstrated here on two examples. A brief review is also given of novel results obtained recently. |
---|---|
ISSN: | 2100-014X |