Non-conservative effects on spinning black holes from world-line effective field theory

Abstract We generalize the worldline EFT formalism developed in [4–9] to calculate the non-conservative tidal effects on spinning black holes in a long wavelength approximation that is valid to all orders in the magnitude of the spin. We present results for the rate of change of mass and angular mom...

Full description

Bibliographic Details
Main Authors: Walter D. Goldberger, Jingping Li, Ira Z. Rothstein
Format: Article
Language:English
Published: SpringerOpen 2021-06-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP06(2021)053
Description
Summary:Abstract We generalize the worldline EFT formalism developed in [4–9] to calculate the non-conservative tidal effects on spinning black holes in a long wavelength approximation that is valid to all orders in the magnitude of the spin. We present results for the rate of change of mass and angular momentum in a background field and find agreement with previous calculations obtained by different techniques. We also present new results for both the non-conservative equations of motion and power loss/gain for a binary inspiral, which start at 5PN and 2.5PN order respectively and manifest the Penrose process.
ISSN:1029-8479