Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cells

Summary: Vitamin K is a micronutrient necessary for γ-carboxylation of glutamic acids. This post-translational modification occurs in the endoplasmic reticulum (ER) and affects secreted proteins. Recent clinical studies implicate vitamin K in the pathophysiology of diabetes, but the underlying molec...

Full description

Bibliographic Details
Main Authors: Julie Lacombe, Kevin Guo, Jessica Bonneau, Denis Faubert, Florian Gioanni, Alexis Vivoli, Sarah M. Muir, Soraya Hezzaz, Vincent Poitout, Mathieu Ferron
Format: Article
Language:English
Published: Elsevier 2023-05-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124723005119
_version_ 1797828149208154112
author Julie Lacombe
Kevin Guo
Jessica Bonneau
Denis Faubert
Florian Gioanni
Alexis Vivoli
Sarah M. Muir
Soraya Hezzaz
Vincent Poitout
Mathieu Ferron
author_facet Julie Lacombe
Kevin Guo
Jessica Bonneau
Denis Faubert
Florian Gioanni
Alexis Vivoli
Sarah M. Muir
Soraya Hezzaz
Vincent Poitout
Mathieu Ferron
author_sort Julie Lacombe
collection DOAJ
description Summary: Vitamin K is a micronutrient necessary for γ-carboxylation of glutamic acids. This post-translational modification occurs in the endoplasmic reticulum (ER) and affects secreted proteins. Recent clinical studies implicate vitamin K in the pathophysiology of diabetes, but the underlying molecular mechanism remains unknown. Here, we show that mouse β cells lacking γ-carboxylation fail to adapt their insulin secretion in the context of age-related insulin resistance or diet-induced β cell stress. In human islets, γ-carboxylase expression positively correlates with improved insulin secretion in response to glucose. We identify endoplasmic reticulum Gla protein (ERGP) as a γ-carboxylated ER-resident Ca2+-binding protein expressed in β cells. Mechanistically, γ-carboxylation of ERGP protects cells against Ca2+ overfilling by diminishing STIM1 and Orai1 interaction and restraining store-operated Ca2+ entry. These results reveal a critical role of vitamin K-dependent carboxylation in regulation of Ca2+ flux in β cells and in their capacity to adapt to metabolic stress.
first_indexed 2024-04-09T13:00:54Z
format Article
id doaj.art-db075e3aed46422494348fc8be99755a
institution Directory Open Access Journal
issn 2211-1247
language English
last_indexed 2024-04-09T13:00:54Z
publishDate 2023-05-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj.art-db075e3aed46422494348fc8be99755a2023-05-13T04:24:53ZengElsevierCell Reports2211-12472023-05-01425112500Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cellsJulie Lacombe0Kevin Guo1Jessica Bonneau2Denis Faubert3Florian Gioanni4Alexis Vivoli5Sarah M. Muir6Soraya Hezzaz7Vincent Poitout8Mathieu Ferron9Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Corresponding authorMolecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, CanadaMolecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC H3T 1J4, CanadaMass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, CanadaMolecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, CanadaMontreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, CanadaMolecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, CanadaMolecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, CanadaMontreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, CanadaMolecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Corresponding authorSummary: Vitamin K is a micronutrient necessary for γ-carboxylation of glutamic acids. This post-translational modification occurs in the endoplasmic reticulum (ER) and affects secreted proteins. Recent clinical studies implicate vitamin K in the pathophysiology of diabetes, but the underlying molecular mechanism remains unknown. Here, we show that mouse β cells lacking γ-carboxylation fail to adapt their insulin secretion in the context of age-related insulin resistance or diet-induced β cell stress. In human islets, γ-carboxylase expression positively correlates with improved insulin secretion in response to glucose. We identify endoplasmic reticulum Gla protein (ERGP) as a γ-carboxylated ER-resident Ca2+-binding protein expressed in β cells. Mechanistically, γ-carboxylation of ERGP protects cells against Ca2+ overfilling by diminishing STIM1 and Orai1 interaction and restraining store-operated Ca2+ entry. These results reveal a critical role of vitamin K-dependent carboxylation in regulation of Ca2+ flux in β cells and in their capacity to adapt to metabolic stress.http://www.sciencedirect.com/science/article/pii/S2211124723005119CP: Metabolism
spellingShingle Julie Lacombe
Kevin Guo
Jessica Bonneau
Denis Faubert
Florian Gioanni
Alexis Vivoli
Sarah M. Muir
Soraya Hezzaz
Vincent Poitout
Mathieu Ferron
Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cells
Cell Reports
CP: Metabolism
title Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cells
title_full Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cells
title_fullStr Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cells
title_full_unstemmed Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cells
title_short Vitamin K-dependent carboxylation regulates Ca2+ flux and adaptation to metabolic stress in β cells
title_sort vitamin k dependent carboxylation regulates ca2 flux and adaptation to metabolic stress in β cells
topic CP: Metabolism
url http://www.sciencedirect.com/science/article/pii/S2211124723005119
work_keys_str_mv AT julielacombe vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT kevinguo vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT jessicabonneau vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT denisfaubert vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT floriangioanni vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT alexisvivoli vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT sarahmmuir vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT sorayahezzaz vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT vincentpoitout vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells
AT mathieuferron vitaminkdependentcarboxylationregulatesca2fluxandadaptationtometabolicstressinbcells