On Some New Inequalities of Hermite–Hadamard Midpoint and Trapezoid Type for Preinvex Functions in <i>p</i>,<i>q</i>-Calculus

In this paper, we establish some new Hermite–Hadamard type inequalities for preinvex functions and left-right estimates of newly established inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced...

Full description

Bibliographic Details
Main Authors: Ifra Bashir Sial, Muhammad Aamir Ali, Ghulam Murtaza, Sotiris K. Ntouyas, Jarunee Soontharanon, Thanin Sitthiwirattham
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/10/1864
Description
Summary:In this paper, we establish some new Hermite–Hadamard type inequalities for preinvex functions and left-right estimates of newly established inequalities for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>p</mi><mo>,</mo><mi>q</mi></mfenced></semantics></math></inline-formula>-differentiable preinvex functions in the context of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>p</mi><mo>,</mo><mi>q</mi></mfenced></semantics></math></inline-formula>-calculus. We also show that the results established in this paper are generalizations of comparable results in the literature of integral inequalities. Analytic inequalities of this nature and especially the techniques involved have applications in various areas in which symmetry plays a prominent role.
ISSN:2073-8994