The Improvement and Comparison Study of Distance Metrics for Machine Learning Algorithms for Indoor Wi-Fi Localization
Accurate indoor positioning is crucial for many location-based services, but GPS accuracy is significantly reduced due to issues such as signal penetration and accuracy in indoor scenarios. In contrast, indoor Wi-Fi positioning is emerging as a promising alternative in the field. This study proposes...
1. Verfasser: | Xinyue Wang |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
IEEE
2023-01-01
|
Schriftenreihe: | IEEE Access |
Schlagworte: | |
Online Zugang: | https://ieeexplore.ieee.org/document/10214587/ |
Ähnliche Einträge
Ähnliche Einträge
-
Performance Comparison of WiFi and UWB Fingerprinting Indoor Positioning Systems
von: Giuseppe Caso, et al.
Veröffentlicht: (2018-01-01) -
Comprehensive Analysis of Applied Machine Learning in Indoor Positioning Based on Wi-Fi: An Extended Systematic Review
von: Vladimir Bellavista-Parent, et al.
Veröffentlicht: (2022-06-01) -
Wi‑Fi Indoor Localisation: A Deeper Insight Into Patterns in the Fingerprint Map Data
von: Mikuláš Muroň, et al.
Veröffentlicht: (2018-01-01) -
A Wi-Fi-Based Passive Indoor Positioning System via Entropy-Enhanced Deployment of Wi-Fi Sniffers
von: Poh Yuen Chan, et al.
Veröffentlicht: (2023-01-01) -
Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint
von: Lixing Wang, et al.
Veröffentlicht: (2022-12-01)