The Improvement and Comparison Study of Distance Metrics for Machine Learning Algorithms for Indoor Wi-Fi Localization
Accurate indoor positioning is crucial for many location-based services, but GPS accuracy is significantly reduced due to issues such as signal penetration and accuracy in indoor scenarios. In contrast, indoor Wi-Fi positioning is emerging as a promising alternative in the field. This study proposes...
Päätekijä: | Xinyue Wang |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
IEEE
2023-01-01
|
Sarja: | IEEE Access |
Aiheet: | |
Linkit: | https://ieeexplore.ieee.org/document/10214587/ |
Samankaltaisia teoksia
-
Performance Comparison of WiFi and UWB Fingerprinting Indoor Positioning Systems
Tekijä: Giuseppe Caso, et al.
Julkaistu: (2018-01-01) -
Comprehensive Analysis of Applied Machine Learning in Indoor Positioning Based on Wi-Fi: An Extended Systematic Review
Tekijä: Vladimir Bellavista-Parent, et al.
Julkaistu: (2022-06-01) -
Wi‑Fi Indoor Localisation: A Deeper Insight Into Patterns in the Fingerprint Map Data
Tekijä: Mikuláš Muroň, et al.
Julkaistu: (2018-01-01) -
A Wi-Fi-Based Passive Indoor Positioning System via Entropy-Enhanced Deployment of Wi-Fi Sniffers
Tekijä: Poh Yuen Chan, et al.
Julkaistu: (2023-01-01) -
Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint
Tekijä: Lixing Wang, et al.
Julkaistu: (2022-12-01)