Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second order

In this article we study the existence of positive solutions for the nonlocal multi-point boundary-value problem $$displaylines{ u''(t)+f(t, ^{c}D^{alpha}u(t))=0, quad alpha in(0, 1), ext{ a.e. } tin(0, 1), cr u(0)=0, quad u(1)=sum_{k=1}^m a_k u(au_k), quad au_kin(a, b)subset (0, 1)....

Full description

Bibliographic Details
Main Authors: Ahmed M. A. El-Sayed, Ebtisam O. Bin-Taher
Format: Article
Language:English
Published: Texas State University 2013-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/64/abstr.html
_version_ 1811249763447734272
author Ahmed M. A. El-Sayed
Ebtisam O. Bin-Taher
author_facet Ahmed M. A. El-Sayed
Ebtisam O. Bin-Taher
author_sort Ahmed M. A. El-Sayed
collection DOAJ
description In this article we study the existence of positive solutions for the nonlocal multi-point boundary-value problem $$displaylines{ u''(t)+f(t, ^{c}D^{alpha}u(t))=0, quad alpha in(0, 1), ext{ a.e. } tin(0, 1), cr u(0)=0, quad u(1)=sum_{k=1}^m a_k u(au_k), quad au_kin(a, b)subset (0, 1). }$$ We also consider the corresponding integral condition, and the two special cases $alpha = 0 $ and $ alpha = 1$.
first_indexed 2024-04-12T15:53:19Z
format Article
id doaj.art-db31755a6fd144fa94baa6b2a6d00379
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-12T15:53:19Z
publishDate 2013-03-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-db31755a6fd144fa94baa6b2a6d003792022-12-22T03:26:27ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-03-01201364,18Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second orderAhmed M. A. El-SayedEbtisam O. Bin-TaherIn this article we study the existence of positive solutions for the nonlocal multi-point boundary-value problem $$displaylines{ u''(t)+f(t, ^{c}D^{alpha}u(t))=0, quad alpha in(0, 1), ext{ a.e. } tin(0, 1), cr u(0)=0, quad u(1)=sum_{k=1}^m a_k u(au_k), quad au_kin(a, b)subset (0, 1). }$$ We also consider the corresponding integral condition, and the two special cases $alpha = 0 $ and $ alpha = 1$.http://ejde.math.txstate.edu/Volumes/2013/64/abstr.htmlFractional calculusboundary value problemnonlocal conditionintegral conditionpositive solution
spellingShingle Ahmed M. A. El-Sayed
Ebtisam O. Bin-Taher
Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second order
Electronic Journal of Differential Equations
Fractional calculus
boundary value problem
nonlocal condition
integral condition
positive solution
title Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second order
title_full Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second order
title_fullStr Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second order
title_full_unstemmed Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second order
title_short Positive solutions for a nonlocal multi-point boundary-value problem of fractional and second order
title_sort positive solutions for a nonlocal multi point boundary value problem of fractional and second order
topic Fractional calculus
boundary value problem
nonlocal condition
integral condition
positive solution
url http://ejde.math.txstate.edu/Volumes/2013/64/abstr.html
work_keys_str_mv AT ahmedmaelsayed positivesolutionsforanonlocalmultipointboundaryvalueproblemoffractionalandsecondorder
AT ebtisamobintaher positivesolutionsforanonlocalmultipointboundaryvalueproblemoffractionalandsecondorder