A translational perspective towards clinical AI fairness
Abstract Artificial intelligence (AI) has demonstrated the ability to extract insights from data, but the fairness of such data-driven insights remains a concern in high-stakes fields. Despite extensive developments, issues of AI fairness in clinical contexts have not been adequately addressed. A fa...
Hauptverfasser: | Mingxuan Liu, Yilin Ning, Salinelat Teixayavong, Mayli Mertens, Jie Xu, Daniel Shu Wei Ting, Lionel Tim-Ee Cheng, Jasmine Chiat Ling Ong, Zhen Ling Teo, Ting Fang Tan, Narrendar RaviChandran, Fei Wang, Leo Anthony Celi, Marcus Eng Hock Ong, Nan Liu |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Nature Portfolio
2023-09-01
|
Schriftenreihe: | npj Digital Medicine |
Online Zugang: | https://doi.org/10.1038/s41746-023-00918-4 |
Ähnliche Einträge
-
The next generation of healthcare ecosystem in the metaverse
von: Yong Li, et al.
Veröffentlicht: (2024-06-01) -
Conformable Electrode Arrays for Wearable Neuroprostheses
von: Narrendar RaviChandran, et al.
Veröffentlicht: (2023-03-01) -
AI and machine learning in resuscitation: Ongoing research, new concepts, and key challenges
von: Yohei Okada, et al.
Veröffentlicht: (2023-09-01) -
Improved interpretable machine learning emergency department triage tool addressing class imbalance
von: Clarisse SJ Look, et al.
Veröffentlicht: (2024-05-01) -
AI Models to Assist Vancomycin Dosage Titration
von: Zhiyu Wang, et al.
Veröffentlicht: (2022-02-01)