Forecasting stock prices changes using long-short term memory neural network with symbolic genetic programming
Abstract This study introduces an augmented Long-Short Term Memory (LSTM) neural network architecture, integrating Symbolic Genetic Programming (SGP), with the objective of forecasting cross-sectional price returns across a comprehensive dataset comprising 4500 listed stocks in the Chinese market ov...
Autores principales: | , , , |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
Nature Portfolio
2024-01-01
|
Colección: | Scientific Reports |
Acceso en línea: | https://doi.org/10.1038/s41598-023-50783-0 |