Forecasting stock prices changes using long-short term memory neural network with symbolic genetic programming
Abstract This study introduces an augmented Long-Short Term Memory (LSTM) neural network architecture, integrating Symbolic Genetic Programming (SGP), with the objective of forecasting cross-sectional price returns across a comprehensive dataset comprising 4500 listed stocks in the Chinese market ov...
Hlavní autoři: | Qi Li, Norshaliza Kamaruddin, Siti Sophiayati Yuhaniz, Hamdan Amer Ali Al-Jaifi |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Nature Portfolio
2024-01-01
|
Edice: | Scientific Reports |
On-line přístup: | https://doi.org/10.1038/s41598-023-50783-0 |
Podobné jednotky
-
Forecasting stock prices with long-short term memory neural network based on attention mechanism.
Autor: Jiayu Qiu, a další
Vydáno: (2020-01-01) -
A HYBRID RECURRENT NEURAL NETWORK AND LONG SHORT-TERM MEMORY FOR SIMPLIFIED GENERAL PERTURBATIONS-4 MODEL IN ORBIT PROPAGATION /
Autor: Nor'Asnilawati Salleh, 1982-, author 362370, a další
Vydáno: (2022) -
A HYBRID RECURRENT NEURAL NETWORK AND LONG SHORT-TERM MEMORY FOR SIMPLIFIED GENERAL PERTURBATIONS-4 MODEL IN ORBIT PROPAGATION /
Autor: Nor'Asnilawati Salleh, 1982-, author 362370, a další
Vydáno: (2022) -
Long run dynamic relationships between oil prices, exchange rates, stock market and interest rate in Malaysia
Autor: Nordin, Sabariah, a další
Vydáno: (2018) -
The comparison stateless and stateful LSTM architectures for short-term stock price forecasting
Autor: Anna Chadidjah, a další
Vydáno: (2024-01-01)