Forecasting stock prices changes using long-short term memory neural network with symbolic genetic programming

Abstract This study introduces an augmented Long-Short Term Memory (LSTM) neural network architecture, integrating Symbolic Genetic Programming (SGP), with the objective of forecasting cross-sectional price returns across a comprehensive dataset comprising 4500 listed stocks in the Chinese market ov...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Qi Li, Norshaliza Kamaruddin, Siti Sophiayati Yuhaniz, Hamdan Amer Ali Al-Jaifi
Formaat: Artikel
Taal:English
Gepubliceerd in: Nature Portfolio 2024-01-01
Reeks:Scientific Reports
Online toegang:https://doi.org/10.1038/s41598-023-50783-0

Gelijkaardige items