Forecasting stock prices changes using long-short term memory neural network with symbolic genetic programming

Abstract This study introduces an augmented Long-Short Term Memory (LSTM) neural network architecture, integrating Symbolic Genetic Programming (SGP), with the objective of forecasting cross-sectional price returns across a comprehensive dataset comprising 4500 listed stocks in the Chinese market ov...

全面介绍

书目详细资料
Main Authors: Qi Li, Norshaliza Kamaruddin, Siti Sophiayati Yuhaniz, Hamdan Amer Ali Al-Jaifi
格式: 文件
语言:English
出版: Nature Portfolio 2024-01-01
丛编:Scientific Reports
在线阅读:https://doi.org/10.1038/s41598-023-50783-0