On the (29,5)-Arcs in <i>PG</i>(2,7) and Some Generalized Arcs in <i>PG</i>(2,<i>q</i>)

Using an exhaustive computer search, we prove that the number of inequivalent <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>29</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow>...

Full description

Bibliographic Details
Main Authors: Iliya Bouyukliev, Eun Ju Cheon, Tatsuya Maruta, Tsukasa Okazaki
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/3/320
_version_ 1818537371063287808
author Iliya Bouyukliev
Eun Ju Cheon
Tatsuya Maruta
Tsukasa Okazaki
author_facet Iliya Bouyukliev
Eun Ju Cheon
Tatsuya Maruta
Tsukasa Okazaki
author_sort Iliya Bouyukliev
collection DOAJ
description Using an exhaustive computer search, we prove that the number of inequivalent <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>29</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-arcs in PG<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is exactly 22. This generalizes a result of Barlotti (see Barlotti, A. Some Topics in Finite Geometrical Structures, 1965), who constructed the first such arc from a conic. Our classification result is based on the fact that arcs and linear codes are related, which enables us to apply an algorithm for classifying the associated linear codes instead. Related to this result, several infinite families of arcs and multiple blocking sets are constructed. Lastly, the relationship between these arcs and the Barlotti arc is explored using a construction that we call transitioning.
first_indexed 2024-12-11T18:49:55Z
format Article
id doaj.art-db3ab1086b4343baaff35065566e58e5
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-11T18:49:55Z
publishDate 2020-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-db3ab1086b4343baaff35065566e58e52022-12-22T00:54:20ZengMDPI AGMathematics2227-73902020-03-018332010.3390/math8030320math8030320On the (29,5)-Arcs in <i>PG</i>(2,7) and Some Generalized Arcs in <i>PG</i>(2,<i>q</i>)Iliya Bouyukliev0Eun Ju Cheon1Tatsuya Maruta2Tsukasa Okazaki3Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 5000 Veliko Tarnovo, BulgariaDepartment of Mathematics and RINS, Gyeongsang National University, Jinju 52828, KoreaDepartment of Mathematical Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, JapanDepartment of Mathematical Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, JapanUsing an exhaustive computer search, we prove that the number of inequivalent <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>29</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-arcs in PG<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is exactly 22. This generalizes a result of Barlotti (see Barlotti, A. Some Topics in Finite Geometrical Structures, 1965), who constructed the first such arc from a conic. Our classification result is based on the fact that arcs and linear codes are related, which enables us to apply an algorithm for classifying the associated linear codes instead. Related to this result, several infinite families of arcs and multiple blocking sets are constructed. Lastly, the relationship between these arcs and the Barlotti arc is explored using a construction that we call transitioning.https://www.mdpi.com/2227-7390/8/3/320projective planearcblocking setlinear code, griesmer code
spellingShingle Iliya Bouyukliev
Eun Ju Cheon
Tatsuya Maruta
Tsukasa Okazaki
On the (29,5)-Arcs in <i>PG</i>(2,7) and Some Generalized Arcs in <i>PG</i>(2,<i>q</i>)
Mathematics
projective plane
arc
blocking set
linear code, griesmer code
title On the (29,5)-Arcs in <i>PG</i>(2,7) and Some Generalized Arcs in <i>PG</i>(2,<i>q</i>)
title_full On the (29,5)-Arcs in <i>PG</i>(2,7) and Some Generalized Arcs in <i>PG</i>(2,<i>q</i>)
title_fullStr On the (29,5)-Arcs in <i>PG</i>(2,7) and Some Generalized Arcs in <i>PG</i>(2,<i>q</i>)
title_full_unstemmed On the (29,5)-Arcs in <i>PG</i>(2,7) and Some Generalized Arcs in <i>PG</i>(2,<i>q</i>)
title_short On the (29,5)-Arcs in <i>PG</i>(2,7) and Some Generalized Arcs in <i>PG</i>(2,<i>q</i>)
title_sort on the 29 5 arcs in i pg i 2 7 and some generalized arcs in i pg i 2 i q i
topic projective plane
arc
blocking set
linear code, griesmer code
url https://www.mdpi.com/2227-7390/8/3/320
work_keys_str_mv AT iliyabouyukliev onthe295arcsinipgi27andsomegeneralizedarcsinipgi2iqi
AT eunjucheon onthe295arcsinipgi27andsomegeneralizedarcsinipgi2iqi
AT tatsuyamaruta onthe295arcsinipgi27andsomegeneralizedarcsinipgi2iqi
AT tsukasaokazaki onthe295arcsinipgi27andsomegeneralizedarcsinipgi2iqi