Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure

Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The...

Full description

Bibliographic Details
Main Authors: Xinghan Guo, Alexander M. Stramma, Zixi Li, William G. Roth, Benchen Huang, Yu Jin, Ryan A. Parker, Jesús Arjona Martínez, Noah Shofer, Cathryn P. Michaels, Carola P. Purser, Martin H. Appel, Evgeny M. Alexeev, Tianle Liu, Andrea C. Ferrari, David D. Awschalom, Nazar Delegan, Benjamin Pingault, Giulia Galli, F. Joseph Heremans, Mete Atatüre, Alexander A. High
Format: Article
Language:English
Published: American Physical Society 2023-11-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.13.041037
_version_ 1827630615557570560
author Xinghan Guo
Alexander M. Stramma
Zixi Li
William G. Roth
Benchen Huang
Yu Jin
Ryan A. Parker
Jesús Arjona Martínez
Noah Shofer
Cathryn P. Michaels
Carola P. Purser
Martin H. Appel
Evgeny M. Alexeev
Tianle Liu
Andrea C. Ferrari
David D. Awschalom
Nazar Delegan
Benjamin Pingault
Giulia Galli
F. Joseph Heremans
Mete Atatüre
Alexander A. High
author_facet Xinghan Guo
Alexander M. Stramma
Zixi Li
William G. Roth
Benchen Huang
Yu Jin
Ryan A. Parker
Jesús Arjona Martínez
Noah Shofer
Cathryn P. Michaels
Carola P. Purser
Martin H. Appel
Evgeny M. Alexeev
Tianle Liu
Andrea C. Ferrari
David D. Awschalom
Nazar Delegan
Benjamin Pingault
Giulia Galli
F. Joseph Heremans
Mete Atatüre
Alexander A. High
author_sort Xinghan Guo
collection DOAJ
description Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10)  μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies.
first_indexed 2024-03-09T14:09:14Z
format Article
id doaj.art-db6a40bae215418fb1b24a8503d36340
institution Directory Open Access Journal
issn 2160-3308
language English
last_indexed 2024-03-09T14:09:14Z
publishDate 2023-11-01
publisher American Physical Society
record_format Article
series Physical Review X
spelling doaj.art-db6a40bae215418fb1b24a8503d363402023-11-29T16:19:12ZengAmerican Physical SocietyPhysical Review X2160-33082023-11-0113404103710.1103/PhysRevX.13.041037Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane HeterostructureXinghan GuoAlexander M. StrammaZixi LiWilliam G. RothBenchen HuangYu JinRyan A. ParkerJesús Arjona MartínezNoah ShoferCathryn P. MichaelsCarola P. PurserMartin H. AppelEvgeny M. AlexeevTianle LiuAndrea C. FerrariDavid D. AwschalomNazar DeleganBenjamin PingaultGiulia GalliF. Joseph HeremansMete AtatüreAlexander A. HighRobust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10)  μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies.http://doi.org/10.1103/PhysRevX.13.041037
spellingShingle Xinghan Guo
Alexander M. Stramma
Zixi Li
William G. Roth
Benchen Huang
Yu Jin
Ryan A. Parker
Jesús Arjona Martínez
Noah Shofer
Cathryn P. Michaels
Carola P. Purser
Martin H. Appel
Evgeny M. Alexeev
Tianle Liu
Andrea C. Ferrari
David D. Awschalom
Nazar Delegan
Benjamin Pingault
Giulia Galli
F. Joseph Heremans
Mete Atatüre
Alexander A. High
Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure
Physical Review X
title Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure
title_full Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure
title_fullStr Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure
title_full_unstemmed Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure
title_short Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure
title_sort microwave based quantum control and coherence protection of tin vacancy spin qubits in a strain tuned diamond membrane heterostructure
url http://doi.org/10.1103/PhysRevX.13.041037
work_keys_str_mv AT xinghanguo microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT alexandermstramma microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT zixili microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT williamgroth microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT benchenhuang microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT yujin microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT ryanaparker microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT jesusarjonamartinez microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT noahshofer microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT cathrynpmichaels microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT carolappurser microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT martinhappel microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT evgenymalexeev microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT tianleliu microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT andreacferrari microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT daviddawschalom microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT nazardelegan microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT benjaminpingault microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT giuliagalli microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT fjosephheremans microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT meteatature microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure
AT alexanderahigh microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure