Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure
Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2023-11-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.13.041037 |
_version_ | 1827630615557570560 |
---|---|
author | Xinghan Guo Alexander M. Stramma Zixi Li William G. Roth Benchen Huang Yu Jin Ryan A. Parker Jesús Arjona Martínez Noah Shofer Cathryn P. Michaels Carola P. Purser Martin H. Appel Evgeny M. Alexeev Tianle Liu Andrea C. Ferrari David D. Awschalom Nazar Delegan Benjamin Pingault Giulia Galli F. Joseph Heremans Mete Atatüre Alexander A. High |
author_facet | Xinghan Guo Alexander M. Stramma Zixi Li William G. Roth Benchen Huang Yu Jin Ryan A. Parker Jesús Arjona Martínez Noah Shofer Cathryn P. Michaels Carola P. Purser Martin H. Appel Evgeny M. Alexeev Tianle Liu Andrea C. Ferrari David D. Awschalom Nazar Delegan Benjamin Pingault Giulia Galli F. Joseph Heremans Mete Atatüre Alexander A. High |
author_sort | Xinghan Guo |
collection | DOAJ |
description | Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10) μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies. |
first_indexed | 2024-03-09T14:09:14Z |
format | Article |
id | doaj.art-db6a40bae215418fb1b24a8503d36340 |
institution | Directory Open Access Journal |
issn | 2160-3308 |
language | English |
last_indexed | 2024-03-09T14:09:14Z |
publishDate | 2023-11-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review X |
spelling | doaj.art-db6a40bae215418fb1b24a8503d363402023-11-29T16:19:12ZengAmerican Physical SocietyPhysical Review X2160-33082023-11-0113404103710.1103/PhysRevX.13.041037Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane HeterostructureXinghan GuoAlexander M. StrammaZixi LiWilliam G. RothBenchen HuangYu JinRyan A. ParkerJesús Arjona MartínezNoah ShoferCathryn P. MichaelsCarola P. PurserMartin H. AppelEvgeny M. AlexeevTianle LiuAndrea C. FerrariDavid D. AwschalomNazar DeleganBenjamin PingaultGiulia GalliF. Joseph HeremansMete AtatüreAlexander A. HighRobust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10) μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies.http://doi.org/10.1103/PhysRevX.13.041037 |
spellingShingle | Xinghan Guo Alexander M. Stramma Zixi Li William G. Roth Benchen Huang Yu Jin Ryan A. Parker Jesús Arjona Martínez Noah Shofer Cathryn P. Michaels Carola P. Purser Martin H. Appel Evgeny M. Alexeev Tianle Liu Andrea C. Ferrari David D. Awschalom Nazar Delegan Benjamin Pingault Giulia Galli F. Joseph Heremans Mete Atatüre Alexander A. High Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure Physical Review X |
title | Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure |
title_full | Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure |
title_fullStr | Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure |
title_full_unstemmed | Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure |
title_short | Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure |
title_sort | microwave based quantum control and coherence protection of tin vacancy spin qubits in a strain tuned diamond membrane heterostructure |
url | http://doi.org/10.1103/PhysRevX.13.041037 |
work_keys_str_mv | AT xinghanguo microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT alexandermstramma microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT zixili microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT williamgroth microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT benchenhuang microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT yujin microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT ryanaparker microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT jesusarjonamartinez microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT noahshofer microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT cathrynpmichaels microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT carolappurser microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT martinhappel microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT evgenymalexeev microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT tianleliu microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT andreacferrari microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT daviddawschalom microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT nazardelegan microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT benjaminpingault microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT giuliagalli microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT fjosephheremans microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT meteatature microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure AT alexanderahigh microwavebasedquantumcontrolandcoherenceprotectionoftinvacancyspinqubitsinastraintuneddiamondmembraneheterostructure |