In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA

The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains u...

Full description

Bibliographic Details
Main Authors: Marina Reichlmeir, Júlia Canet-Pons, Gabriele Koepf, Wasifa Nurieva, Ruth Pia Duecker, Claudia Doering, Kathryn Abell, Jana Key, Matthew P. Stokes, Stefan Zielen, Ralf Schubert, Zoltán Ivics, Georg Auburger
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/12/19/2399
_version_ 1827722731361140736
author Marina Reichlmeir
Júlia Canet-Pons
Gabriele Koepf
Wasifa Nurieva
Ruth Pia Duecker
Claudia Doering
Kathryn Abell
Jana Key
Matthew P. Stokes
Stefan Zielen
Ralf Schubert
Zoltán Ivics
Georg Auburger
author_facet Marina Reichlmeir
Júlia Canet-Pons
Gabriele Koepf
Wasifa Nurieva
Ruth Pia Duecker
Claudia Doering
Kathryn Abell
Jana Key
Matthew P. Stokes
Stefan Zielen
Ralf Schubert
Zoltán Ivics
Georg Auburger
author_sort Marina Reichlmeir
collection DOAJ
description The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component <i>Usp2</i>, many non-coding RNAs, ataxia genes <i>Itpr1</i>, <i>Grid2</i>, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., <i>Oprm1</i>. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.
first_indexed 2024-03-10T21:48:05Z
format Article
id doaj.art-db755476b80843dbad5c7f067ecc1ecd
institution Directory Open Access Journal
issn 2073-4409
language English
last_indexed 2024-03-10T21:48:05Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Cells
spelling doaj.art-db755476b80843dbad5c7f067ecc1ecd2023-11-19T14:13:17ZengMDPI AGCells2073-44092023-10-011219239910.3390/cells12192399In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNAMarina Reichlmeir0Júlia Canet-Pons1Gabriele Koepf2Wasifa Nurieva3Ruth Pia Duecker4Claudia Doering5Kathryn Abell6Jana Key7Matthew P. Stokes8Stefan Zielen9Ralf Schubert10Zoltán Ivics11Georg Auburger12Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, GermanyGoethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, GermanyGoethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, GermanyTransposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, GermanyDivision of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, GermanyDr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, GermanyCell Signaling Technology, Inc., Danvers, MA 01923, USAGoethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, GermanyCell Signaling Technology, Inc., Danvers, MA 01923, USADivision of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, GermanyDivision of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, GermanyTransposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, GermanyGoethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, GermanyThe autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component <i>Usp2</i>, many non-coding RNAs, ataxia genes <i>Itpr1</i>, <i>Grid2</i>, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., <i>Oprm1</i>. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.https://www.mdpi.com/2073-4409/12/19/2399cerebellar ataxiacytoplasmic ATMsynaptic pathology
spellingShingle Marina Reichlmeir
Júlia Canet-Pons
Gabriele Koepf
Wasifa Nurieva
Ruth Pia Duecker
Claudia Doering
Kathryn Abell
Jana Key
Matthew P. Stokes
Stefan Zielen
Ralf Schubert
Zoltán Ivics
Georg Auburger
In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA
Cells
cerebellar ataxia
cytoplasmic ATM
synaptic pathology
title In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA
title_full In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA
title_fullStr In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA
title_full_unstemmed In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA
title_short In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA
title_sort in cerebellar atrophy of 12 month old atm null mice transcriptome upregulations concern most neurotransmission and neuropeptide pathways while downregulations affect prominently itpr1 usp2 and non coding rna
topic cerebellar ataxia
cytoplasmic ATM
synaptic pathology
url https://www.mdpi.com/2073-4409/12/19/2399
work_keys_str_mv AT marinareichlmeir incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT juliacanetpons incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT gabrielekoepf incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT wasifanurieva incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT ruthpiaduecker incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT claudiadoering incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT kathrynabell incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT janakey incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT matthewpstokes incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT stefanzielen incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT ralfschubert incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT zoltanivics incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna
AT georgauburger incerebellaratrophyof12montholdatmnullmicetranscriptomeupregulationsconcernmostneurotransmissionandneuropeptidepathwayswhiledownregulationsaffectprominentlyitpr1usp2andnoncodingrna