Stable gonality is computable
Stable gonality is a multigraph parameter that measures the complexity of a graph. It is defined using maps to trees. Those maps, in some sense, divide the edges equally over the edges of the tree; stable gonality asks for the map with the minimum number of edges mapped to each edge of the tree. Thi...
Главные авторы: | Ragnar Groot Koerkamp, Marieke van der Wegen |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Discrete Mathematics & Theoretical Computer Science
2019-06-01
|
Серии: | Discrete Mathematics & Theoretical Computer Science |
Предметы: | |
Online-ссылка: | https://dmtcs.episciences.org/4931/pdf |
Схожие документы
-
Destroying Multicolored Paths and Cycles in Edge-Colored Graphs
по: Nils Jakob Eckstein, и др.
Опубликовано: (2023-03-01) -
Notes on Equitable Partitions into Matching Forests in Mixed Graphs and into $b$-branchings in Digraphs
по: Kenjiro Takazawa
Опубликовано: (2022-03-01) -
Destroying Bicolored $P_3$s by Deleting Few Edges
по: Niels Grüttemeier, и др.
Опубликовано: (2021-06-01) -
On the shelling antimatroids of split graphs
по: Jean Cardinal, и др.
Опубликовано: (2017-03-01) -
On the multipacking number of grid graphs
по: Laurent Beaudou, и др.
Опубликовано: (2019-06-01)