Thermoelectric Properties of the Corbino Disk in Graphene

Thermopower and the Lorentz number for an edge-free (Corbino) graphene disk in the quantum Hall regime is calculated within the Landauer–Büttiker formalism. By varying the electrochemical potential, we find that amplitude of the Seebeck coefficient follows a modified Goldsmid–Sharp relation, with th...

Full description

Bibliographic Details
Main Authors: Adam Rycerz, Katarzyna Rycerz, Piotr Witkowski
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/12/4250
Description
Summary:Thermopower and the Lorentz number for an edge-free (Corbino) graphene disk in the quantum Hall regime is calculated within the Landauer–Büttiker formalism. By varying the electrochemical potential, we find that amplitude of the Seebeck coefficient follows a modified Goldsmid–Sharp relation, with the energy gap defined by the interval between the zero and the first Landau levels in bulk graphene. An analogous relation for the Lorentz number is also determined. Thus, these thermoelectric properties are solely defined by the magnetic field, the temperature, the Fermi velocity in graphene, and fundamental constants including the electron charge, the Planck and Boltzmann constants, being independent of the geometric dimensions of the system. This suggests that the Corbino disk in graphene may operate as a thermoelectric thermometer, allowing to measure small temperature differences between two reservoirs, if the mean temperature magnetic field are known.
ISSN:1996-1944