A Multifault‐Tolerant Training Scheme for Nonideal Memristive Neural Networks
Memristor crossbar is extensively investigated as an energy‐efficient accelerator for neural network (NN) computations. However, hardware implementation of NNs using realistic memristors is challenging due to the ubiquity of faults (mainly classified into hard and soft faults) in memristors. Herein,...
Huvudupphovsmän: | Yihong Chen, Zhen Fan, Shuai Dong, Minghui Qin, Min Zeng, Xubing Lu, Gougu Zhou, Xingsen Gao, Jun-Ming Liu |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
Wiley
2022-05-01
|
Serie: | Advanced Intelligent Systems |
Ämnen: | |
Länkar: | https://doi.org/10.1002/aisy.202100237 |
Liknande verk
Liknande verk
-
Comments on Pinched Hysteresis Loops of Memristive Elements
av: Z. Biolek, et al.
Publicerad: (2015-12-01) -
Advances in Emerging Photonic Memristive and Memristive‐Like Devices
av: Wenxiao Wang, et al.
Publicerad: (2022-10-01) -
Fault Diagnosis of the Rotating Rectifier Diode Over a TSSM Based on the Armature Current Calculation and Similarity Measurement
av: Peirong Zhu, et al.
Publicerad: (2022-01-01) -
Memristive crossbar-based circuit design of back-propagation neural network with synchronous memristance adjustment
av: Le Yang, et al.
Publicerad: (2024-04-01) -
Fault Tolerant Design, Error Detection and Correction /
av: Hatcher, Stephaine, author 639643, et al.
Publicerad: (2012)