Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions

Head motion during MRI acquisition presents significant challenges for neuroimaging analyses. In this work, we present a retrospective motion correction framework built on a Fourier domain motion simulation model combined with established 3D convolutional neural network (CNN) architectures. Quantita...

Description complète

Détails bibliographiques
Auteurs principaux: Ben A Duffy, Lu Zhao, Farshid Sepehrband, Joyce Min, Danny JJ Wang, Yonggang Shi, Arthur W Toga, Hosung Kim
Format: Article
Langue:English
Publié: Elsevier 2021-04-01
Collection:NeuroImage
Sujets:
Accès en ligne:http://www.sciencedirect.com/science/article/pii/S1053811921000331