Summary: | PURPOSE: To distinguish hepatocellular carcinoma (HCC) from other types of hepatic lesions with the adaptive multi-exponential IVIM model. METHODS: 94 hepatic focal lesions, including 38 HCC, 16 metastasis, 12 focal nodular hyperplasia, 13 cholangiocarcinoma, and 15 hemangioma, were examined in this study. Diffusion-weighted images were acquired with 13 b values (b = 0, 3, …, 500 s/mm2) to measure the adaptive multi-exponential IVIM parameters, namely, pure diffusion coefficient (D), diffusion fraction (fd), pseudo-diffusion coefficient (Di*) and perfusion-related diffusion fraction (fi) of the ith perfusion component. Comparison of the parameters of and their diagnostic performance was determined using Mann-Whitney U test, independent-sample t test, one-way analysis of variance, Z test and receiver-operating characteristic analysis. RESULTS: D, D1* and D2* presented significantly difference between HCCs and other hepatic lesions, whereas fd, f1 and f2 did not show statistical differences. In the differential diagnosis of HCCs from other hepatic lesions, D2* (AUC, 0.927) provided best diagnostic performance among all parameters. Additionally, the number of exponential terms in the model was also an important indicator for distinguishing HCCs from other hepatic lesions. In the benign and malignant analysis, D gave the greatest AUC values, 0.895 or 0.853, for differentiation between malignant and benign lesions with three or two exponential terms. Most parameters were not significantly different between hypovascular and hypervascular lesions. For multiple comparisons, significant differences of D, D1* or D2* were found between certain lesion types. CONCLUSION: The adaptive multi-exponential IVIM model was useful and reliable to distinguish HCC from other hepatic lesions.
|