coherent WaveBurst, a pipeline for unmodeled gravitational-wave data analysis

coherent WaveBurst (cWB) is a highly configurable pipeline designed to detect a broad range of gravitational-wave (GW) transients in the data of the worldwide network of GW detectors. The algorithmic core of cWB is a time–frequency analysis with the Wilson–Daubechies–Meyer wavelets aimed at the iden...

Full description

Bibliographic Details
Main Authors: Marco Drago, Sergey Klimenko, Claudia Lazzaro, Edoardo Milotti, Guenakh Mitselmakher, Valentin Necula, Brendan O’Brian, Giovanni Andrea Prodi, Francesco Salemi, Marek Szczepanczyk, Shubhanshu Tiwari, Vaibhav Tiwari, Gayathri V, Gabriele Vedovato, Igor Yakushin
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:SoftwareX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352711021000236
Description
Summary:coherent WaveBurst (cWB) is a highly configurable pipeline designed to detect a broad range of gravitational-wave (GW) transients in the data of the worldwide network of GW detectors. The algorithmic core of cWB is a time–frequency analysis with the Wilson–Daubechies–Meyer wavelets aimed at the identification of GW events without prior knowledge of the signal waveform. cWB has been in active development since 2003 and it has been used to analyze all scientific data collected by the LIGO-Virgo detectors ever since. On September 14, 2015, the cWB low-latency search detected the first gravitational-wave event, GW150914, a merger of two black holes. In 2019, a public open-source version of cWB has been released with GPLv3 license.
ISSN:2352-7110