Network Rewiring in the <i>r</i>-<i>K</i> Plane

We generate correlated scale-free networks in the configuration model through a new rewiring algorithm that allows one to tune the Newman assortativity coefficient <i>r</i> and the average degree of the nearest neighbors <i>K</i> (in the range <inline-formula> <math...

Descrición completa

Detalles Bibliográficos
Main Authors: Maria Letizia Bertotti, Giovanni Modanese
Formato: Artigo
Idioma:English
Publicado: MDPI AG 2020-06-01
Series:Entropy
Subjects:
Acceso en liña:https://www.mdpi.com/1099-4300/22/6/653
Descripción
Summary:We generate correlated scale-free networks in the configuration model through a new rewiring algorithm that allows one to tune the Newman assortativity coefficient <i>r</i> and the average degree of the nearest neighbors <i>K</i> (in the range <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>1</mn> <mo>≤</mo> <mi>r</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>≥</mo> <mo>〈</mo> <mi>k</mi> <mo>〉</mo> </mrow> </semantics> </math> </inline-formula>). At each attempted rewiring step, local variations <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>K</mi> </mrow> </semantics> </math> </inline-formula> are computed and then the step is accepted according to a standard Metropolis probability <inline-formula> <math display="inline"> <semantics> <mrow> <mo form="prefix">exp</mo> <mo>(</mo> <mo>±</mo> <mo>Δ</mo> <mi>r</mi> <mo>/</mo> <mi>T</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <i>T</i> is a variable temperature. We prove a general relation between <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>K</mi> </mrow> </semantics> </math> </inline-formula>, thus finding a connection between two variables that have very different definitions and topological meaning. We describe rewiring trajectories in the <i>r</i>-<i>K</i> plane and explore the limits of maximally assortative and disassortative networks, including the case of small minimum degree (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>≥</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>), which has previously not been considered. The size of the giant component and the entropy of the network are monitored in the rewiring. The average number of second neighbors in the branching approximation <inline-formula> <math display="inline"> <semantics> <msub> <mover accent="true"> <mi>z</mi> <mo>¯</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> </semantics> </math> </inline-formula> is proven to be constant in the rewiring, and independent from the correlations for Markovian networks. As a function of the degree, however, the number of second neighbors gives useful information on the network connectivity and is also monitored.
ISSN:1099-4300