Network Rewiring in the <i>r</i>-<i>K</i> Plane

We generate correlated scale-free networks in the configuration model through a new rewiring algorithm that allows one to tune the Newman assortativity coefficient <i>r</i> and the average degree of the nearest neighbors <i>K</i> (in the range <inline-formula> <math...

Full description

Bibliographic Details
Main Authors: Maria Letizia Bertotti, Giovanni Modanese
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/6/653
_version_ 1797565461105213440
author Maria Letizia Bertotti
Giovanni Modanese
author_facet Maria Letizia Bertotti
Giovanni Modanese
author_sort Maria Letizia Bertotti
collection DOAJ
description We generate correlated scale-free networks in the configuration model through a new rewiring algorithm that allows one to tune the Newman assortativity coefficient <i>r</i> and the average degree of the nearest neighbors <i>K</i> (in the range <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>1</mn> <mo>≤</mo> <mi>r</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>≥</mo> <mo>〈</mo> <mi>k</mi> <mo>〉</mo> </mrow> </semantics> </math> </inline-formula>). At each attempted rewiring step, local variations <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>K</mi> </mrow> </semantics> </math> </inline-formula> are computed and then the step is accepted according to a standard Metropolis probability <inline-formula> <math display="inline"> <semantics> <mrow> <mo form="prefix">exp</mo> <mo>(</mo> <mo>±</mo> <mo>Δ</mo> <mi>r</mi> <mo>/</mo> <mi>T</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <i>T</i> is a variable temperature. We prove a general relation between <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>K</mi> </mrow> </semantics> </math> </inline-formula>, thus finding a connection between two variables that have very different definitions and topological meaning. We describe rewiring trajectories in the <i>r</i>-<i>K</i> plane and explore the limits of maximally assortative and disassortative networks, including the case of small minimum degree (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>≥</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>), which has previously not been considered. The size of the giant component and the entropy of the network are monitored in the rewiring. The average number of second neighbors in the branching approximation <inline-formula> <math display="inline"> <semantics> <msub> <mover accent="true"> <mi>z</mi> <mo>¯</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> </semantics> </math> </inline-formula> is proven to be constant in the rewiring, and independent from the correlations for Markovian networks. As a function of the degree, however, the number of second neighbors gives useful information on the network connectivity and is also monitored.
first_indexed 2024-03-10T19:12:31Z
format Article
id doaj.art-dba6b4dcd2ee4e8b85b97dd5e3f35d9f
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T19:12:31Z
publishDate 2020-06-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-dba6b4dcd2ee4e8b85b97dd5e3f35d9f2023-11-20T03:42:45ZengMDPI AGEntropy1099-43002020-06-0122665310.3390/e22060653Network Rewiring in the <i>r</i>-<i>K</i> PlaneMaria Letizia Bertotti0Giovanni Modanese1Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, ItalyFaculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, ItalyWe generate correlated scale-free networks in the configuration model through a new rewiring algorithm that allows one to tune the Newman assortativity coefficient <i>r</i> and the average degree of the nearest neighbors <i>K</i> (in the range <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>1</mn> <mo>≤</mo> <mi>r</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>≥</mo> <mo>〈</mo> <mi>k</mi> <mo>〉</mo> </mrow> </semantics> </math> </inline-formula>). At each attempted rewiring step, local variations <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>K</mi> </mrow> </semantics> </math> </inline-formula> are computed and then the step is accepted according to a standard Metropolis probability <inline-formula> <math display="inline"> <semantics> <mrow> <mo form="prefix">exp</mo> <mo>(</mo> <mo>±</mo> <mo>Δ</mo> <mi>r</mi> <mo>/</mo> <mi>T</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <i>T</i> is a variable temperature. We prove a general relation between <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>K</mi> </mrow> </semantics> </math> </inline-formula>, thus finding a connection between two variables that have very different definitions and topological meaning. We describe rewiring trajectories in the <i>r</i>-<i>K</i> plane and explore the limits of maximally assortative and disassortative networks, including the case of small minimum degree (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>≥</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>), which has previously not been considered. The size of the giant component and the entropy of the network are monitored in the rewiring. The average number of second neighbors in the branching approximation <inline-formula> <math display="inline"> <semantics> <msub> <mover accent="true"> <mi>z</mi> <mo>¯</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>B</mi> </mrow> </msub> </semantics> </math> </inline-formula> is proven to be constant in the rewiring, and independent from the correlations for Markovian networks. As a function of the degree, however, the number of second neighbors gives useful information on the network connectivity and is also monitored.https://www.mdpi.com/1099-4300/22/6/653scale-free networksnetwork rewiringnetwork assortativitynetwork entropy
spellingShingle Maria Letizia Bertotti
Giovanni Modanese
Network Rewiring in the <i>r</i>-<i>K</i> Plane
Entropy
scale-free networks
network rewiring
network assortativity
network entropy
title Network Rewiring in the <i>r</i>-<i>K</i> Plane
title_full Network Rewiring in the <i>r</i>-<i>K</i> Plane
title_fullStr Network Rewiring in the <i>r</i>-<i>K</i> Plane
title_full_unstemmed Network Rewiring in the <i>r</i>-<i>K</i> Plane
title_short Network Rewiring in the <i>r</i>-<i>K</i> Plane
title_sort network rewiring in the i r i i k i plane
topic scale-free networks
network rewiring
network assortativity
network entropy
url https://www.mdpi.com/1099-4300/22/6/653
work_keys_str_mv AT marialetiziabertotti networkrewiringintheiriikiplane
AT giovannimodanese networkrewiringintheiriikiplane