Mapping strain across Co80Ta7B13 / Co62Ta6B32 glassy interfaces

While multilayered thin film metallic glasses offer promising mechanical properties due to their interfaces, the correlation between chemical composition and and strain at the interfaces has not been investigated so far. Hence, atomic distance and composition variations across glassy Co80Ta7B13 / Co...

Full description

Bibliographic Details
Main Authors: S. Evertz, J. Zálešák, M. Hans, H.C. Jansen, J.F. Keckes, H. Sheng, J. Eckert, C. Gammer, J.M. Schneider
Format: Article
Language:English
Published: Elsevier 2023-10-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127523007426
Description
Summary:While multilayered thin film metallic glasses offer promising mechanical properties due to their interfaces, the correlation between chemical composition and and strain at the interfaces has not been investigated so far. Hence, atomic distance and composition variations across glassy Co80Ta7B13 / Co62Ta6B32 interfaces are revealed by correlative transmission electron microscopy, nanobeam precession electron diffraction (NBPED) mapping and atom probe tomography (APT). A composition dependent mean atomic distance is identified for the individual layers. At the interfaces, a chemically graded region of 4 nm thickness is observed with APT, while the mean atomic distance gradient - investigated by NBPED mapping - extends over 9 nm and cannot solely be explained by chemical composition changes. Instead, the excess thickness of the atomic distance gradient compared to the chemical gradient can be rationalized by the presence of strain at the interface.
ISSN:0264-1275