Integrating Remote Photoplethysmography and Machine Learning on Multimodal Dataset for Noninvasive Heart Rate Monitoring
Non-contact heart monitoring is crucial in advancing telemedicine, fitness tracking, and mass screening. Remote photoplethysmography (rPPG) is a non-contact technique to obtain information about heart pulse by analyzing the changes in the light intensity reflected or absorbed by the skin during the...
Main Authors: | Rinaldi Anwar Buyung, Alhadi Bustamam, Muhammad Remzy Syah Ramazhan |
---|---|
Format: | Article |
Sprog: | English |
Udgivet: |
MDPI AG
2024-11-01
|
Serier: | Sensors |
Fag: | |
Online adgang: | https://www.mdpi.com/1424-8220/24/23/7537 |
Lignende værker
-
Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography
af: Chun-Chi Chen, et al.
Udgivet: (2025-01-01) -
Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals
af: Su-Gyeong Yu, et al.
Udgivet: (2021-09-01) -
Intelligent Remote Photoplethysmography-Based Methods for Heart Rate Estimation from Face Videos: A Survey
af: Smera Premkumar, et al.
Udgivet: (2022-08-01) -
Heart Rate Estimation From Remote Photoplethysmography Based on Light-Weight U-Net and Attention Modules
af: Sung-Nien Yu, et al.
Udgivet: (2023-01-01) -
Optimizing Remote Photoplethysmography Using Adaptive Skin Segmentation for Real-Time Heart Rate Monitoring
af: R. M. Fouad, et al.
Udgivet: (2019-01-01)