A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive System
Finite-set model predictive control (FS-MPC) is an easy and intuitive control technique. However, parametric uncertainties reduce the accuracy of the prediction. Classical MPC requires many calculations; therefore, the calculation time generates a considerable time delay in the actuation. This delay...
Autores principales: | , , , , , , |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
MDPI AG
2024-06-01
|
Colección: | World Electric Vehicle Journal |
Materias: | |
Acceso en línea: | https://www.mdpi.com/2032-6653/15/7/277 |
_version_ | 1827176928396705792 |
---|---|
author | Hector Hidalgo Rodolfo Orosco Hector Huerta Nimrod Vazquez Leonel Estrada Sergio Pinto Angel de Castro |
author_facet | Hector Hidalgo Rodolfo Orosco Hector Huerta Nimrod Vazquez Leonel Estrada Sergio Pinto Angel de Castro |
author_sort | Hector Hidalgo |
collection | DOAJ |
description | Finite-set model predictive control (FS-MPC) is an easy and intuitive control technique. However, parametric uncertainties reduce the accuracy of the prediction. Classical MPC requires many calculations; therefore, the calculation time generates a considerable time delay in the actuation. This delay deteriorates the performance of the system and generates a significant current ripple. This paper proposes a finite-set integral sliding modes predictive control (FS-ISMPC) for a permanent magnet synchronous motor (PMSM). The conventional decision function is replaced by an integral sliding cost function, which has several advantages, such as robustness to parameter uncertainties, and convergence in finite time. The proposed decision function does not require the inductance and resistance parameters of the motor. In addition, the proposal includes compensation for the calculation delay of the control vector. The proposed control strategy was compared with traditional predictive control with delay compensation using a real-time hardware-in-the-loop (HIL) simulation. The results obtained from the comparison indicated that the proposed controller has a lower THD and computational burden. |
first_indexed | 2025-03-21T04:35:08Z |
format | Article |
id | doaj.art-dbb5e7d8536b4791b023262b1b720b4a |
institution | Directory Open Access Journal |
issn | 2032-6653 |
language | English |
last_indexed | 2025-03-21T04:35:08Z |
publishDate | 2024-06-01 |
publisher | MDPI AG |
record_format | Article |
series | World Electric Vehicle Journal |
spelling | doaj.art-dbb5e7d8536b4791b023262b1b720b4a2024-07-26T13:05:17ZengMDPI AGWorld Electric Vehicle Journal2032-66532024-06-0115727710.3390/wevj15070277A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive SystemHector Hidalgo0Rodolfo Orosco1Hector Huerta2Nimrod Vazquez3Leonel Estrada4Sergio Pinto5Angel de Castro6Mechatronics Department, TecNM/Instituto Tecnológico Superior de Villa La Venta, Huimanguillo 86410, MexicoElectronics Department, TecNM/Instituto Tecnológico de Celaya, Celaya 38010, MexicoDepartment of Computational Sciences and Engineering, Universidad de Guadalajara/Centro Universitario de los Valles, Ameca 46600, MexicoElectronics Department, TecNM/Instituto Tecnológico de Celaya, Celaya 38010, MexicoElectronics Department, TecNM/Instituto Tecnológico Superior del Sur de Guanajuato, Benito Juárez, Guanajuato 38980, MexicoSchool of Digital Innovation, Instituto Técnico Superior Especializado (ITSE) de Panamá, Tocumen, Avenida Domingo Díaz, Panama City 07202, PanamaElectronics and Communications Technology Department, Universidad Autonoma de Madrid, 28049 Madrid, SpainFinite-set model predictive control (FS-MPC) is an easy and intuitive control technique. However, parametric uncertainties reduce the accuracy of the prediction. Classical MPC requires many calculations; therefore, the calculation time generates a considerable time delay in the actuation. This delay deteriorates the performance of the system and generates a significant current ripple. This paper proposes a finite-set integral sliding modes predictive control (FS-ISMPC) for a permanent magnet synchronous motor (PMSM). The conventional decision function is replaced by an integral sliding cost function, which has several advantages, such as robustness to parameter uncertainties, and convergence in finite time. The proposed decision function does not require the inductance and resistance parameters of the motor. In addition, the proposal includes compensation for the calculation delay of the control vector. The proposed control strategy was compared with traditional predictive control with delay compensation using a real-time hardware-in-the-loop (HIL) simulation. The results obtained from the comparison indicated that the proposed controller has a lower THD and computational burden.https://www.mdpi.com/2032-6653/15/7/277computational burdenmodel predictive controlreal-time simulationHIL testingpermanent magnet synchronous motor |
spellingShingle | Hector Hidalgo Rodolfo Orosco Hector Huerta Nimrod Vazquez Leonel Estrada Sergio Pinto Angel de Castro A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive System World Electric Vehicle Journal computational burden model predictive control real-time simulation HIL testing permanent magnet synchronous motor |
title | A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive System |
title_full | A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive System |
title_fullStr | A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive System |
title_full_unstemmed | A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive System |
title_short | A Finite-Set Integral Sliding Modes Predictive Control for a Permanent Magnet Synchronous Motor Drive System |
title_sort | finite set integral sliding modes predictive control for a permanent magnet synchronous motor drive system |
topic | computational burden model predictive control real-time simulation HIL testing permanent magnet synchronous motor |
url | https://www.mdpi.com/2032-6653/15/7/277 |
work_keys_str_mv | AT hectorhidalgo afinitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT rodolfoorosco afinitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT hectorhuerta afinitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT nimrodvazquez afinitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT leonelestrada afinitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT sergiopinto afinitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT angeldecastro afinitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT hectorhidalgo finitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT rodolfoorosco finitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT hectorhuerta finitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT nimrodvazquez finitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT leonelestrada finitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT sergiopinto finitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem AT angeldecastro finitesetintegralslidingmodespredictivecontrolforapermanentmagnetsynchronousmotordrivesystem |