Prediction of hot spots towards drug discovery by protein sequence embedding with 1D convolutional neural network.

Protein hotspot residues are key sites that mediate protein-protein interactions. Accurate identification of these residues is essential for understanding the mechanism from protein to function and for designing drug targets. Current research has mostly focused on using machine learning methods to p...

Full description

Bibliographic Details
Main Authors: Youzhi Zhang, Sijie Yao, Peng Chen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0290899
Description
Summary:Protein hotspot residues are key sites that mediate protein-protein interactions. Accurate identification of these residues is essential for understanding the mechanism from protein to function and for designing drug targets. Current research has mostly focused on using machine learning methods to predict hot spots from known interface residues, which artificially extract the corresponding features of amino acid residues from sequence, structure, evolution, energy, and other information to train and test machine learning models. The process is cumbersome, time-consuming and laborious to some extent. This paper proposes a novel idea that develops a pre-trained protein sequence embedding model combined with a one-dimensional convolutional neural network, called Embed-1dCNN, to predict protein hotspot residues. In order to obtain large data samples, this work integrates and extracts data from the datasets of ASEdb, BID, SKEMPI and dbMPIKT to generate a new dataset, and adopts the SMOTE algorithm to expand positive samples to form the training set. The experimental results show that the method achieves an F1 score of 0.82 on the test set. Compared with other hot spot prediction methods, our model achieved better prediction performance.
ISSN:1932-6203