Uniform continuity of the solution map for nonlinear wave equation in Reissner-Nordstrom metric

In this paper we study the properties of the solutions to the Cauchy problem $$ (u_{tt}-\Delta u)_{g_s}=f(u)+g(|x|),\quad t\in [0, 1], x\in {\cal R}^3, \tag{1} $$ $$ u(1, x)=u_0\in {\dot H}^1({\cal R}^3),\quad u_t(1, x)=u_1\in L^2({\cal R}^3), \tag{2} $$ where $g_s$ is the Reissner-Nordström metric...

Full description

Bibliographic Details
Main Author: Svetlin Georgiev
Format: Article
Language:English
Published: University of Szeged 2007-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=271
Description
Summary:In this paper we study the properties of the solutions to the Cauchy problem $$ (u_{tt}-\Delta u)_{g_s}=f(u)+g(|x|),\quad t\in [0, 1], x\in {\cal R}^3, \tag{1} $$ $$ u(1, x)=u_0\in {\dot H}^1({\cal R}^3),\quad u_t(1, x)=u_1\in L^2({\cal R}^3), \tag{2} $$ where $g_s$ is the Reissner-Nordström metric (see [2]); $f\in {\cal C}^1({\cal R}^1)$, $f(0)=0$, $a|u|\leq f'(u)\leq b|u|$, $g\in {\cal C}({\cal R}^+)$, $g(|x|)\geq 0$, $g(|x|)=0$ for $|x|\geq r_1$, $a$ and $b$ are positive constants, $r_1>0$ is suitable chosen. When $g(r)\equiv 0$ we prove that the Cauchy problem $(1)$, $(2)$ has a nontrivial solution $u(t, r)$ in the form $u(t, r)=v(t)\omega(r)\in {\cal C}((0, 1]{\dot H}^1({\cal R}^+))$, where $r=|x|$, and the solution map is not uniformly continuous. When $g(r)\ne 0$ we prove that the Cauchy problem $(1)$, $(2)$ has a nontrivial solution $u(t, r)$ in the form $u(t, r)=v(t)\omega(r)\in {\cal C}((0, 1]{\dot H}^1({\cal R}^+))$, where $r=|x|$, and the solution map is not uniformly continuous.
ISSN:1417-3875