The Hydraulically Controlled Oscillating Piston Converter

One way to realize inertia in energy saving hydraulic switching converters is a mechanical oscillator connected to a piston. Its two basic advantages over the use of fluid in an inductance pipe are higher compactness and a better decoupling of inductance and capacitance; these are opposed by a more...

Full description

Bibliographic Details
Main Author: Rudolf Scheidl
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/8/2156
Description
Summary:One way to realize inertia in energy saving hydraulic switching converters is a mechanical oscillator connected to a piston. Its two basic advantages over the use of fluid in an inductance pipe are higher compactness and a better decoupling of inductance and capacitance; these are opposed by a more complex valve system, which raises costs if electric control is applied. This paper presents and studies an oscillating mass converter with pure hydraulic control. It features a pressure control function and constitutes a step-up converter. A simple model is established to elucidate the basic properties of the function principle under idealized conditions. The complete system with the hydraulic control concept is studied by an elaborate dynamical model. It is shown that the converter is able to operate in the intended way under the conditions of the mathematical model. A potential application for a load sensing type meter out control of a cylinder drive is sketched.
ISSN:1996-1073