Crystallization, rheological behavior and mechanical properties of carbon nanotube/metallocene polypropylene composites

In this paper, metallocene polypropylene (mPP) composites filled with carbon nanotubes (CNTs) were prepared using twin-screw extruder. The crystallization behavior, mechanical properties and rheological behavior were characterized by a differential scanning calorimetry (DSC), universal material test...

Full description

Bibliographic Details
Main Authors: Kaili Zhu, Xiuxue Guo, Qinglu Zhang, Changheng Liu, Wenjin Li, Penghui Shen, Hongsheng Tan
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:Materials Research Express
Subjects:
Online Access:https://doi.org/10.1088/2053-1591/acb41b
Description
Summary:In this paper, metallocene polypropylene (mPP) composites filled with carbon nanotubes (CNTs) were prepared using twin-screw extruder. The crystallization behavior, mechanical properties and rheological behavior were characterized by a differential scanning calorimetry (DSC), universal material testing machine and rotational rheometer. The results of DSC indicated that the effect of CNTs on heterogeneous nucleation of mPP was very obvious and the crystallizability of the resin matrix was improved after adding CNTs, especially the initial crystallization temperature ( T _0 ), crystallization temperature ( T _c ) increased by 9.63 °C and 8.28 °C when the CNTs content was 1.25 wt%. The yield stress and elastic modulus increased to 33.98 MPa and 1605.6 MPa as the CNTs concentration increased to 1.0 wt% in contrast to that of the neat mPP. The results of SEM images showed that the better dispersion and adhesion of CNTs into polymer matrix. The results of rotational rheometer proved that interactions increased between CNTs and mPP as the content of CNTs increasing.
ISSN:2053-1591