Multiscale Analysis of Cellular Composition and Morphology in Intact Cerebral Organoids

Cerebral organoids recapitulate in vivo phenotypes and physiological functions of the brain and have great potential in studying brain development, modeling diseases, and conducting neural network research. It is essential to obtain whole-mount three-dimensional (3D) images of cerebral organoids at...

Full description

Bibliographic Details
Main Authors: Haihua Ma, Juan Chen, Zhiyu Deng, Tingting Sun, Qingming Luo, Hui Gong, Xiangning Li, Ben Long
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Biology
Subjects:
Online Access:https://www.mdpi.com/2079-7737/11/9/1270
Description
Summary:Cerebral organoids recapitulate in vivo phenotypes and physiological functions of the brain and have great potential in studying brain development, modeling diseases, and conducting neural network research. It is essential to obtain whole-mount three-dimensional (3D) images of cerebral organoids at cellular levels to explore their characteristics and applications. Existing histological strategies sacrifice inherent spatial characteristics of organoids, and the strategy for volume imaging and 3D analysis of entire organoids is urgently needed. Here, we proposed a high-resolution imaging pipeline based on fluorescent labeling by viral transduction and 3D immunostaining with fluorescence micro-optical sectioning tomography (fMOST). We were able to image intact organoids using our pipeline, revealing cytoarchitecture information of organoids and the spatial localization of neurons and glial fibrillary acidic protein positive cells (GFAP<sup>+</sup> cells). We performed single-cell reconstruction to analyze the morphology of neurons and GFAP<sup>+</sup> cells. Localization and quantitative analysis of cortical layer markers revealed heterogeneity of organoids. This pipeline enabled acquisition of high-resolution spatial information of millimeter-scale organoids for analyzing their cell composition and morphology.
ISSN:2079-7737