Photon Detection as a Process of Information Gain

Making use of the equivalence between information and entropy, we have shown in a recent paper that particles moving with a kinetic energy <inline-formula> <math display="inline"> <semantics> <mi>ε</mi> </semantics> </math> </inline-formula>...

Full description

Bibliographic Details
Main Author: J Gerhard Müller
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/4/392
_version_ 1797571985388077056
author J Gerhard Müller
author_facet J Gerhard Müller
author_sort J Gerhard Müller
collection DOAJ
description Making use of the equivalence between information and entropy, we have shown in a recent paper that particles moving with a kinetic energy <inline-formula> <math display="inline"> <semantics> <mi>ε</mi> </semantics> </math> </inline-formula> carry potential information <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>ε</mi> <mo>,</mo> <mi>T</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mfrac> <mi>ε</mi> <mrow> <msub> <mi>k</mi> <mi>B</mi> </msub> <mo> </mo> <mi>T</mi> </mrow> </mfrac> </mrow> </semantics> </math> </inline-formula> relative to a heat reservoir of temperature <inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula>. In this paper we build on this result and consider in more detail the process of information gain in photon detection. Considering photons of energy <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and a photo-ionization detector operated at a temperature <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, we evaluate the signal-to-noise ratio <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> for different detector designs and detector operation conditions and show that the information gain realized upon detection, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, always remains smaller than the potential information <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> carried with the photons themselves, i.e.,: <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>ln</mi> <mrow> <mo>(</mo> <mrow> <mi>S</mi> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>≤</mo> <msub> <mi>i</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>k</mi> <mi>B</mi> </msub> <msub> <mi>T</mi> <mi>D</mi> </msub> <mo> </mo> </mrow> </mfrac> </mrow> </semantics> </math> </inline-formula>. This result is shown to be generally valid for all kinds of technical photon detectors, which shows that <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> can indeed be regarded as an intrinsic information content that is carried with the photons themselves. Overall, our results suggest that photon detectors perform as thermodynamic engines that incompletely convert potential information into realized information with an efficiency that is limited by the second law of thermodynamics and the Landauer energy bounds on information gain and information erasure.
first_indexed 2024-03-10T20:49:15Z
format Article
id doaj.art-dbe7f25db7344d3eb90ad05585500db6
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T20:49:15Z
publishDate 2020-03-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-dbe7f25db7344d3eb90ad05585500db62023-11-19T20:07:59ZengMDPI AGEntropy1099-43002020-03-0122439210.3390/e22040392Photon Detection as a Process of Information GainJ Gerhard Müller0Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, D-80335 Munich, GermanyMaking use of the equivalence between information and entropy, we have shown in a recent paper that particles moving with a kinetic energy <inline-formula> <math display="inline"> <semantics> <mi>ε</mi> </semantics> </math> </inline-formula> carry potential information <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>ε</mi> <mo>,</mo> <mi>T</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mfrac> <mi>ε</mi> <mrow> <msub> <mi>k</mi> <mi>B</mi> </msub> <mo> </mo> <mi>T</mi> </mrow> </mfrac> </mrow> </semantics> </math> </inline-formula> relative to a heat reservoir of temperature <inline-formula> <math display="inline"> <semantics> <mi>T</mi> </semantics> </math> </inline-formula>. In this paper we build on this result and consider in more detail the process of information gain in photon detection. Considering photons of energy <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and a photo-ionization detector operated at a temperature <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, we evaluate the signal-to-noise ratio <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> for different detector designs and detector operation conditions and show that the information gain realized upon detection, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, always remains smaller than the potential information <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> carried with the photons themselves, i.e.,: <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>ln</mi> <mrow> <mo>(</mo> <mrow> <mi>S</mi> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>≤</mo> <msub> <mi>i</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>k</mi> <mi>B</mi> </msub> <msub> <mi>T</mi> <mi>D</mi> </msub> <mo> </mo> </mrow> </mfrac> </mrow> </semantics> </math> </inline-formula>. This result is shown to be generally valid for all kinds of technical photon detectors, which shows that <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>i</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>E</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> can indeed be regarded as an intrinsic information content that is carried with the photons themselves. Overall, our results suggest that photon detectors perform as thermodynamic engines that incompletely convert potential information into realized information with an efficiency that is limited by the second law of thermodynamics and the Landauer energy bounds on information gain and information erasure.https://www.mdpi.com/1099-4300/22/4/392photonphoton detectioninformation gaindetection efficiencyfigure of merit (FOM)Landauer principle
spellingShingle J Gerhard Müller
Photon Detection as a Process of Information Gain
Entropy
photon
photon detection
information gain
detection efficiency
figure of merit (FOM)
Landauer principle
title Photon Detection as a Process of Information Gain
title_full Photon Detection as a Process of Information Gain
title_fullStr Photon Detection as a Process of Information Gain
title_full_unstemmed Photon Detection as a Process of Information Gain
title_short Photon Detection as a Process of Information Gain
title_sort photon detection as a process of information gain
topic photon
photon detection
information gain
detection efficiency
figure of merit (FOM)
Landauer principle
url https://www.mdpi.com/1099-4300/22/4/392
work_keys_str_mv AT jgerhardmuller photondetectionasaprocessofinformationgain