Study on the Relationship between High Temperature Mechanical Properties and Precipitates Evolution of 7085 Al Alloy after Long Time Thermal Exposures

The requirement for 7085 Al alloy as large airframe parts has been increasing due to its low quenching sensitivity and high strength. However, the relationship between high temperature mechanical properties and the evolution of precipitates in hot environments is still unclear. In this work, thermal...

Full description

Bibliographic Details
Main Authors: Jinxin Zang, Pan Dai, Yanqing Yang, Shuai Liu, Bin Huang, Jigang Ru, Xian Luo
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/9/1483
Description
Summary:The requirement for 7085 Al alloy as large airframe parts has been increasing due to its low quenching sensitivity and high strength. However, the relationship between high temperature mechanical properties and the evolution of precipitates in hot environments is still unclear. In this work, thermal exposure followed by tensile tests were conducted on the 7085 Al alloy at various temperatures (100 °C, 125 °C, 150 °C and 175 °C). Variations of hardness, electrical conductivity and tensile properties were investigated. The evolution of the nano scale precipitates was also quantitatively characterized by transmission electron microscopy (TEM). The results show that the hardness and electrical conductivity of the alloy are more sensitive to the temperature than to the time. The strength decreases continuously with the increase of temperature due to the transformation from η′ to η phase during the process. Furthermore, the main η phase in the alloy transformed from <i>V3</i> and <i>V4</i> to <i>V1</i> and <i>V2</i> variants when the temperature was 125 °C. Additionally, with increasing the temperature, the average precipitate radius increased, meanwhile the volume fraction and number density of the precipitates decreased. The strengthening effect of nano scale precipitates on tensile properties of the alloy was calculated and analyzed.
ISSN:2075-4701