Neutral Differential Equations of Second-Order: Iterative Monotonic Properties

In this work, we investigate the oscillatory properties of the neutral differential equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mo stretchy="false">(&l...

Full description

Bibliographic Details
Main Authors: Osama Moaaz, Fahd Masood, Clemente Cesarano, Shami A. M. Alsallami, E. M. Khalil, Mohamed L. Bouazizi
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/9/1356
_version_ 1797503970270248960
author Osama Moaaz
Fahd Masood
Clemente Cesarano
Shami A. M. Alsallami
E. M. Khalil
Mohamed L. Bouazizi
author_facet Osama Moaaz
Fahd Masood
Clemente Cesarano
Shami A. M. Alsallami
E. M. Khalil
Mohamed L. Bouazizi
author_sort Osama Moaaz
collection DOAJ
description In this work, we investigate the oscillatory properties of the neutral differential equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mo stretchy="false">(</mo><mi>r</mi><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><msup><mrow><mo>[</mo><msup><mrow><mo stretchy="false">(</mo><mi>s</mi><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><mi>p</mi><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><mi>s</mi><mrow><mo stretchy="false">(</mo><mi>g</mi><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mo>′</mo></msup><mo>]</mo></mrow><mi mathvariant="fraktur">v</mi></msup><mo stretchy="false">)</mo></mrow><mo>′</mo></msup><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>q</mi><mi>i</mi></msub><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><msup><mi>s</mi><mi mathvariant="fraktur">v</mi></msup><mrow><mo stretchy="false">(</mo><msub><mi>h</mi><mi>i</mi></msub><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>≥</mo><msub><mi>s</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>. We first present new monotonic properties for the solutions of this equation, and these properties are characterized by an iterative nature. Using these new properties, we obtain new oscillation conditions that guarantee that all solutions are oscillate. Our results are a complement and extension to the relevant results in the literature. We test the significance of the results by applying them to special cases of the studied equation.
first_indexed 2024-03-10T03:57:59Z
format Article
id doaj.art-dbf9b0eaaf0349318d8a45c7de20038f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:57:59Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-dbf9b0eaaf0349318d8a45c7de20038f2023-11-23T08:43:04ZengMDPI AGMathematics2227-73902022-04-01109135610.3390/math10091356Neutral Differential Equations of Second-Order: Iterative Monotonic PropertiesOsama Moaaz0Fahd Masood1Clemente Cesarano2Shami A. M. Alsallami3E. M. Khalil4Mohamed L. Bouazizi5Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi ArabiaDepartment of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, EgyptSection of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39, 00186 Roma, ItalyDepartment of Mathematical Sciences, College of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi ArabiaDepartment of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi ArabiaDepartment of Mechanical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Alkharj 16273, Saudi ArabiaIn this work, we investigate the oscillatory properties of the neutral differential equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mo stretchy="false">(</mo><mi>r</mi><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><msup><mrow><mo>[</mo><msup><mrow><mo stretchy="false">(</mo><mi>s</mi><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><mi>p</mi><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><mi>s</mi><mrow><mo stretchy="false">(</mo><mi>g</mi><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mo>′</mo></msup><mo>]</mo></mrow><mi mathvariant="fraktur">v</mi></msup><mo stretchy="false">)</mo></mrow><mo>′</mo></msup><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>q</mi><mi>i</mi></msub><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><msup><mi>s</mi><mi mathvariant="fraktur">v</mi></msup><mrow><mo stretchy="false">(</mo><msub><mi>h</mi><mi>i</mi></msub><mrow><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>≥</mo><msub><mi>s</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>. We first present new monotonic properties for the solutions of this equation, and these properties are characterized by an iterative nature. Using these new properties, we obtain new oscillation conditions that guarantee that all solutions are oscillate. Our results are a complement and extension to the relevant results in the literature. We test the significance of the results by applying them to special cases of the studied equation.https://www.mdpi.com/2227-7390/10/9/1356Emden–Fowlerneutral differential equationsoscillationnon-canonical
spellingShingle Osama Moaaz
Fahd Masood
Clemente Cesarano
Shami A. M. Alsallami
E. M. Khalil
Mohamed L. Bouazizi
Neutral Differential Equations of Second-Order: Iterative Monotonic Properties
Mathematics
Emden–Fowler
neutral differential equations
oscillation
non-canonical
title Neutral Differential Equations of Second-Order: Iterative Monotonic Properties
title_full Neutral Differential Equations of Second-Order: Iterative Monotonic Properties
title_fullStr Neutral Differential Equations of Second-Order: Iterative Monotonic Properties
title_full_unstemmed Neutral Differential Equations of Second-Order: Iterative Monotonic Properties
title_short Neutral Differential Equations of Second-Order: Iterative Monotonic Properties
title_sort neutral differential equations of second order iterative monotonic properties
topic Emden–Fowler
neutral differential equations
oscillation
non-canonical
url https://www.mdpi.com/2227-7390/10/9/1356
work_keys_str_mv AT osamamoaaz neutraldifferentialequationsofsecondorderiterativemonotonicproperties
AT fahdmasood neutraldifferentialequationsofsecondorderiterativemonotonicproperties
AT clementecesarano neutraldifferentialequationsofsecondorderiterativemonotonicproperties
AT shamiamalsallami neutraldifferentialequationsofsecondorderiterativemonotonicproperties
AT emkhalil neutraldifferentialequationsofsecondorderiterativemonotonicproperties
AT mohamedlbouazizi neutraldifferentialequationsofsecondorderiterativemonotonicproperties