Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles
Increasing evidence shows that lungs can be damaged by inhalation of nanoparticles (NPs) at environmental and occupational settings. Recent findings have associated the exposure to iron oxide (Fe2O3) and titanium dioxide (TiO2) – NPs widely used in biomedical and clinical research – with pulmonary o...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-08-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fphys.2019.01047/full |
_version_ | 1818011302867501056 |
---|---|
author | Vinícius Rosa Oliveira Vinícius Rosa Oliveira Juan José Uriarte Bryan Falcones Ignasi Jorba Ignasi Jorba Walter Araujo Zin Ramon Farré Ramon Farré Ramon Farré Daniel Navajas Daniel Navajas Daniel Navajas Isaac Almendros Isaac Almendros Isaac Almendros |
author_facet | Vinícius Rosa Oliveira Vinícius Rosa Oliveira Juan José Uriarte Bryan Falcones Ignasi Jorba Ignasi Jorba Walter Araujo Zin Ramon Farré Ramon Farré Ramon Farré Daniel Navajas Daniel Navajas Daniel Navajas Isaac Almendros Isaac Almendros Isaac Almendros |
author_sort | Vinícius Rosa Oliveira |
collection | DOAJ |
description | Increasing evidence shows that lungs can be damaged by inhalation of nanoparticles (NPs) at environmental and occupational settings. Recent findings have associated the exposure to iron oxide (Fe2O3) and titanium dioxide (TiO2) – NPs widely used in biomedical and clinical research – with pulmonary oxidative stress and inflammation. Although changes on cellular mechanics could contribute to pulmonary inflammation, there is no information regarding the effects of Fe2O3 and TiO2 on alveolar epithelial cell biomechanics. The aim was to investigate the NPs-induced biomechanical effects in terms of cell stiffness and traction forces exerted by human alveolar epithelial cells. Cell Young’s modulus (E) measured by atomic force microscopy in alveolar epithelial cells significantly decreased after exposure to Fe2O3 and TiO2 (∼28 and ∼25%, respectively) compared to control conditions. Moreover, both NPs induced a similar reduction in the traction forces exerted by the alveolar epithelial cells in comparison to the control conditions. Accordingly, immunofluorescence images revealed a reduction of actomyosin stress fibers in response to the exposure to NPs. However, no inflammatory response was detected. In conclusion, an acute exposure of epithelial pulmonary cells to Fe2O3 and TiO2 NPs, which was mild since it was non-cytotoxic and did not induce inflammation, modified cell biomechanical properties which could be translated into damage of the epithelial barrier integrity, suggesting that mild environmental inhalation of Fe2O3 and TiO2 NPs could not be innocuous. |
first_indexed | 2024-04-14T06:06:03Z |
format | Article |
id | doaj.art-dc0a30edc0c247b784f7f8ab8ff4f656 |
institution | Directory Open Access Journal |
issn | 1664-042X |
language | English |
last_indexed | 2024-04-14T06:06:03Z |
publishDate | 2019-08-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Physiology |
spelling | doaj.art-dc0a30edc0c247b784f7f8ab8ff4f6562022-12-22T02:08:32ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2019-08-011010.3389/fphys.2019.01047441052Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide NanoparticlesVinícius Rosa Oliveira0Vinícius Rosa Oliveira1Juan José Uriarte2Bryan Falcones3Ignasi Jorba4Ignasi Jorba5Walter Araujo Zin6Ramon Farré7Ramon Farré8Ramon Farré9Daniel Navajas10Daniel Navajas11Daniel Navajas12Isaac Almendros13Isaac Almendros14Isaac Almendros15Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainLaboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainInstitute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, SpainLaboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainCentro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, SpainInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, SpainUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainInstitute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, SpainCentro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, SpainUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainCentro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, SpainInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, SpainIncreasing evidence shows that lungs can be damaged by inhalation of nanoparticles (NPs) at environmental and occupational settings. Recent findings have associated the exposure to iron oxide (Fe2O3) and titanium dioxide (TiO2) – NPs widely used in biomedical and clinical research – with pulmonary oxidative stress and inflammation. Although changes on cellular mechanics could contribute to pulmonary inflammation, there is no information regarding the effects of Fe2O3 and TiO2 on alveolar epithelial cell biomechanics. The aim was to investigate the NPs-induced biomechanical effects in terms of cell stiffness and traction forces exerted by human alveolar epithelial cells. Cell Young’s modulus (E) measured by atomic force microscopy in alveolar epithelial cells significantly decreased after exposure to Fe2O3 and TiO2 (∼28 and ∼25%, respectively) compared to control conditions. Moreover, both NPs induced a similar reduction in the traction forces exerted by the alveolar epithelial cells in comparison to the control conditions. Accordingly, immunofluorescence images revealed a reduction of actomyosin stress fibers in response to the exposure to NPs. However, no inflammatory response was detected. In conclusion, an acute exposure of epithelial pulmonary cells to Fe2O3 and TiO2 NPs, which was mild since it was non-cytotoxic and did not induce inflammation, modified cell biomechanical properties which could be translated into damage of the epithelial barrier integrity, suggesting that mild environmental inhalation of Fe2O3 and TiO2 NPs could not be innocuous.https://www.frontiersin.org/article/10.3389/fphys.2019.01047/fullair pollutionlung epitheliumcell biomechanicsnanoparticlesactomyosin fibers |
spellingShingle | Vinícius Rosa Oliveira Vinícius Rosa Oliveira Juan José Uriarte Bryan Falcones Ignasi Jorba Ignasi Jorba Walter Araujo Zin Ramon Farré Ramon Farré Ramon Farré Daniel Navajas Daniel Navajas Daniel Navajas Isaac Almendros Isaac Almendros Isaac Almendros Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles Frontiers in Physiology air pollution lung epithelium cell biomechanics nanoparticles actomyosin fibers |
title | Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles |
title_full | Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles |
title_fullStr | Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles |
title_full_unstemmed | Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles |
title_short | Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles |
title_sort | biomechanical response of lung epithelial cells to iron oxide and titanium dioxide nanoparticles |
topic | air pollution lung epithelium cell biomechanics nanoparticles actomyosin fibers |
url | https://www.frontiersin.org/article/10.3389/fphys.2019.01047/full |
work_keys_str_mv | AT viniciusrosaoliveira biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT viniciusrosaoliveira biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT juanjoseuriarte biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT bryanfalcones biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT ignasijorba biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT ignasijorba biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT walteraraujozin biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT ramonfarre biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT ramonfarre biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT ramonfarre biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT danielnavajas biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT danielnavajas biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT danielnavajas biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT isaacalmendros biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT isaacalmendros biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles AT isaacalmendros biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles |