Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles

Increasing evidence shows that lungs can be damaged by inhalation of nanoparticles (NPs) at environmental and occupational settings. Recent findings have associated the exposure to iron oxide (Fe2O3) and titanium dioxide (TiO2) – NPs widely used in biomedical and clinical research – with pulmonary o...

Full description

Bibliographic Details
Main Authors: Vinícius Rosa Oliveira, Juan José Uriarte, Bryan Falcones, Ignasi Jorba, Walter Araujo Zin, Ramon Farré, Daniel Navajas, Isaac Almendros
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-08-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fphys.2019.01047/full
_version_ 1818011302867501056
author Vinícius Rosa Oliveira
Vinícius Rosa Oliveira
Juan José Uriarte
Bryan Falcones
Ignasi Jorba
Ignasi Jorba
Walter Araujo Zin
Ramon Farré
Ramon Farré
Ramon Farré
Daniel Navajas
Daniel Navajas
Daniel Navajas
Isaac Almendros
Isaac Almendros
Isaac Almendros
author_facet Vinícius Rosa Oliveira
Vinícius Rosa Oliveira
Juan José Uriarte
Bryan Falcones
Ignasi Jorba
Ignasi Jorba
Walter Araujo Zin
Ramon Farré
Ramon Farré
Ramon Farré
Daniel Navajas
Daniel Navajas
Daniel Navajas
Isaac Almendros
Isaac Almendros
Isaac Almendros
author_sort Vinícius Rosa Oliveira
collection DOAJ
description Increasing evidence shows that lungs can be damaged by inhalation of nanoparticles (NPs) at environmental and occupational settings. Recent findings have associated the exposure to iron oxide (Fe2O3) and titanium dioxide (TiO2) – NPs widely used in biomedical and clinical research – with pulmonary oxidative stress and inflammation. Although changes on cellular mechanics could contribute to pulmonary inflammation, there is no information regarding the effects of Fe2O3 and TiO2 on alveolar epithelial cell biomechanics. The aim was to investigate the NPs-induced biomechanical effects in terms of cell stiffness and traction forces exerted by human alveolar epithelial cells. Cell Young’s modulus (E) measured by atomic force microscopy in alveolar epithelial cells significantly decreased after exposure to Fe2O3 and TiO2 (∼28 and ∼25%, respectively) compared to control conditions. Moreover, both NPs induced a similar reduction in the traction forces exerted by the alveolar epithelial cells in comparison to the control conditions. Accordingly, immunofluorescence images revealed a reduction of actomyosin stress fibers in response to the exposure to NPs. However, no inflammatory response was detected. In conclusion, an acute exposure of epithelial pulmonary cells to Fe2O3 and TiO2 NPs, which was mild since it was non-cytotoxic and did not induce inflammation, modified cell biomechanical properties which could be translated into damage of the epithelial barrier integrity, suggesting that mild environmental inhalation of Fe2O3 and TiO2 NPs could not be innocuous.
first_indexed 2024-04-14T06:06:03Z
format Article
id doaj.art-dc0a30edc0c247b784f7f8ab8ff4f656
institution Directory Open Access Journal
issn 1664-042X
language English
last_indexed 2024-04-14T06:06:03Z
publishDate 2019-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Physiology
spelling doaj.art-dc0a30edc0c247b784f7f8ab8ff4f6562022-12-22T02:08:32ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2019-08-011010.3389/fphys.2019.01047441052Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide NanoparticlesVinícius Rosa Oliveira0Vinícius Rosa Oliveira1Juan José Uriarte2Bryan Falcones3Ignasi Jorba4Ignasi Jorba5Walter Araujo Zin6Ramon Farré7Ramon Farré8Ramon Farré9Daniel Navajas10Daniel Navajas11Daniel Navajas12Isaac Almendros13Isaac Almendros14Isaac Almendros15Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainLaboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainInstitute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, SpainLaboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainCentro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, SpainInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, SpainUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainInstitute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, SpainCentro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, SpainUnitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, SpainCentro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, SpainInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, SpainIncreasing evidence shows that lungs can be damaged by inhalation of nanoparticles (NPs) at environmental and occupational settings. Recent findings have associated the exposure to iron oxide (Fe2O3) and titanium dioxide (TiO2) – NPs widely used in biomedical and clinical research – with pulmonary oxidative stress and inflammation. Although changes on cellular mechanics could contribute to pulmonary inflammation, there is no information regarding the effects of Fe2O3 and TiO2 on alveolar epithelial cell biomechanics. The aim was to investigate the NPs-induced biomechanical effects in terms of cell stiffness and traction forces exerted by human alveolar epithelial cells. Cell Young’s modulus (E) measured by atomic force microscopy in alveolar epithelial cells significantly decreased after exposure to Fe2O3 and TiO2 (∼28 and ∼25%, respectively) compared to control conditions. Moreover, both NPs induced a similar reduction in the traction forces exerted by the alveolar epithelial cells in comparison to the control conditions. Accordingly, immunofluorescence images revealed a reduction of actomyosin stress fibers in response to the exposure to NPs. However, no inflammatory response was detected. In conclusion, an acute exposure of epithelial pulmonary cells to Fe2O3 and TiO2 NPs, which was mild since it was non-cytotoxic and did not induce inflammation, modified cell biomechanical properties which could be translated into damage of the epithelial barrier integrity, suggesting that mild environmental inhalation of Fe2O3 and TiO2 NPs could not be innocuous.https://www.frontiersin.org/article/10.3389/fphys.2019.01047/fullair pollutionlung epitheliumcell biomechanicsnanoparticlesactomyosin fibers
spellingShingle Vinícius Rosa Oliveira
Vinícius Rosa Oliveira
Juan José Uriarte
Bryan Falcones
Ignasi Jorba
Ignasi Jorba
Walter Araujo Zin
Ramon Farré
Ramon Farré
Ramon Farré
Daniel Navajas
Daniel Navajas
Daniel Navajas
Isaac Almendros
Isaac Almendros
Isaac Almendros
Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles
Frontiers in Physiology
air pollution
lung epithelium
cell biomechanics
nanoparticles
actomyosin fibers
title Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles
title_full Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles
title_fullStr Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles
title_full_unstemmed Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles
title_short Biomechanical Response of Lung Epithelial Cells to Iron Oxide and Titanium Dioxide Nanoparticles
title_sort biomechanical response of lung epithelial cells to iron oxide and titanium dioxide nanoparticles
topic air pollution
lung epithelium
cell biomechanics
nanoparticles
actomyosin fibers
url https://www.frontiersin.org/article/10.3389/fphys.2019.01047/full
work_keys_str_mv AT viniciusrosaoliveira biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT viniciusrosaoliveira biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT juanjoseuriarte biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT bryanfalcones biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT ignasijorba biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT ignasijorba biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT walteraraujozin biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT ramonfarre biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT ramonfarre biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT ramonfarre biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT danielnavajas biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT danielnavajas biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT danielnavajas biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT isaacalmendros biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT isaacalmendros biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles
AT isaacalmendros biomechanicalresponseoflungepithelialcellstoironoxideandtitaniumdioxidenanoparticles