Co-culture of ASCs/EPCs and dermal extracellular matrix hydrogel enhances the repair of full-thickness skin wound by promoting angiogenesis

Abstract Background The repair of large-scale full-thickness skin defects represents a challenging obstacle in skin tissue engineering. To address the most important problem in skin defect repair, namely insufficient blood supply, this study aimed to find a method that could promote the formation of...

Full description

Bibliographic Details
Main Authors: Shuang Lin, Xiaoning He, Yuanjia He
Format: Article
Language:English
Published: BMC 2021-02-01
Series:Stem Cell Research & Therapy
Subjects:
Online Access:https://doi.org/10.1186/s13287-021-02203-1
Description
Summary:Abstract Background The repair of large-scale full-thickness skin defects represents a challenging obstacle in skin tissue engineering. To address the most important problem in skin defect repair, namely insufficient blood supply, this study aimed to find a method that could promote the formation of vascularized skin tissue. Method The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of dermal and angiogenic genes. Furthermore, the co-culture system combined with dermal extracellular matrix hydrogel was used to repair the full-scale skin defects in rats. Result The co-culture of ASCs/EPCs could increase skin- and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASCs/EPCs group could significantly accelerate the repair of skin defects by promoting the regeneration of vascularized skin. Conclusion It is feasible to replace traditional single-seed cells with the ASC/EPC co-culture system for vascularized skin regeneration. This system could ultimately enable clinicians to better repair the full-thickness skin defects and avoid donor site morbidity.
ISSN:1757-6512