Data-driven model based on the simulation of cracking process in brittle material using the phase-field method in application
Numerical simulations and parametric studies of notched rectangular specimens subjected to dynamic tensile loads were performed. The simulations were based on two-dimensional finite element analysis to predict the brittle fracture path using the phase-field approach. The parametric studies investiga...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2020-11-01
|
Series: | Comptes Rendus. Mécanique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.52/ |
Summary: | Numerical simulations and parametric studies of notched rectangular specimens subjected to dynamic tensile loads were performed. The simulations were based on two-dimensional finite element analysis to predict the brittle fracture path using the phase-field approach. The parametric studies investigated the influence of geometric parameters and the loading speed on crack path propagation. An empirical model based on the sparse proper generalized decomposition learning technique was created to predict the crack path. This model provides a quick prediction of the global behavior of the crack path circumventing the CPU cost of the full finite element method simulation. |
---|---|
ISSN: | 1873-7234 |