One Tree at a Time: Restoring Landscape Connectivity through Silvopastoral Systems in Transformed Amazon Landscapes

Due to the continued expansion of pastures and illicit crops, the Andes-Amazon foothills in Colombia are one of most threatened biodiversity hotspots in the country. Halting and restoring the connectivity of the landscapes transformed over the last 40 years and now dominated by extensive cattle ranc...

Full description

Bibliographic Details
Main Authors: Karolina Argote, Beatriz Rodríguez-Sánchez, Marcela Quintero, Wendy Francesconi
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Diversity
Subjects:
Online Access:https://www.mdpi.com/1424-2818/14/10/846
Description
Summary:Due to the continued expansion of pastures and illicit crops, the Andes-Amazon foothills in Colombia are one of most threatened biodiversity hotspots in the country. Halting and restoring the connectivity of the landscapes transformed over the last 40 years and now dominated by extensive cattle ranching practices, represents a challenge. Silvopastoral systems (SPSs) have been proposed as a strategy to help conserve the biodiversity by improving landscape connectivity. However, understanding the contributions of SPSs to biodiversity conservation still requires additional research. At the farm scale (here called farmscape), we compared different landscape fragmentation and connectivity metrics under two SPS conditions (with and without). Overall, the adoption of SPSs increased the probability of connectivity (PC) index in all cases. However, the contributions of SPSs to landscape connectivity were not linear. Greater PC increases were observed in highly degraded farmscapes (ΔPc = 284) compared to farmscapes containing patches that were better connected and had larger habitat areas (ΔPc = 6). These variables could play a fundamental role in enhancing the landscape connectivity through restoration activities that seek to improve biodiversity conservation. Even if they are relatively small and scattered, in highly degraded cattle ranching systems, SPSs could significantly improve the landscape connectivity, which in turn could improve wildlife conservation.
ISSN:1424-2818