Technoeconomic analysis of a fungal pretreatment-based cellulosic ethanol production

Cellulosic biomass shows great potential as feedstock for bioethanol production. Despite clear benefits in terms of greenhouse gas mitigation and bioproduct potential, the commercial production of cellulosic ethanol remains economically challenging at the current state of technology. This paper pres...

Full description

Bibliographic Details
Main Authors: Onu Onu Olughu, Lope G. Tabil, Tim Dumonceaux, Edmund Mupondwa, Duncan Cree, Xue Li
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:Results in Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590123023003869
Description
Summary:Cellulosic biomass shows great potential as feedstock for bioethanol production. Despite clear benefits in terms of greenhouse gas mitigation and bioproduct potential, the commercial production of cellulosic ethanol remains economically challenging at the current state of technology. This paper presents a technoeconomic analysis of a fungal pretreatment-based cellulosic ethanol plant with a processing capacity of 2000 tonnes of switchgrass per day. The production process model was designed and simulated using SuperPro Designer. The plant's ethanol yield, capital investment per unit capacity, and unit ethanol production cost were estimated to be 211.90 L/t of switchgrass, $ 3.60/L, and $ 1.44/L of ethanol, respectively. Fungal pretreatment was the major contributor (72%) to the total capital investment, mainly due to the large quantity of equipment required in the process. A positive net present value (NPV) was generated for the baseline model at ethanol selling price of $ 1.50/L, which increased by 5-fold for 80% glucose yield. Glucose yield was the most sensitive to NPV for all the process parameters evaluated.
ISSN:2590-1230