Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods

Radio telescopes are important for the development of society. With the advent of China’s Five-hundred-meter Aperture Spherical radio Telescope (FAST), adjusting the reflector panel to improve the reception ability is becoming an urgent problem. In this paper, an active control model of the reflecto...

Full description

Bibliographic Details
Main Authors: Yanbo Wang, Yingchang Xiong, Jianming Hao, Jiaqi He, Yuchi Liu, Xinpeng He
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/2/252
_version_ 1797476504622333952
author Yanbo Wang
Yingchang Xiong
Jianming Hao
Jiaqi He
Yuchi Liu
Xinpeng He
author_facet Yanbo Wang
Yingchang Xiong
Jianming Hao
Jiaqi He
Yuchi Liu
Xinpeng He
author_sort Yanbo Wang
collection DOAJ
description Radio telescopes are important for the development of society. With the advent of China’s Five-hundred-meter Aperture Spherical radio Telescope (FAST), adjusting the reflector panel to improve the reception ability is becoming an urgent problem. In this paper, an active control model of the reflector panel is established that considers the minimum sum of the radial offset of the actuator and the non-smoothness of the working paraboloid. Using the idea of discretization, the adjusted position of the main cable nodes, the ideal parabolic equation, and the expansion of each actuator are obtained by inputting the elevation and azimuth angle of the incident electromagnetic wave. To find the ideal parabola, a univariate optimization model is established, and the Fibonacci method is used to search for the optimal solution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>=</mo><mo>−</mo><mn>0.33018</mn></mrow></semantics></math></inline-formula> (offset in the direction away from the sphere’s center) and the focal diameter ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>=</mo><mn>0.4671</mn></mrow></semantics></math></inline-formula> of the parabolic vertex. The ideal two-dimensional parabolic equation is then determined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mn>555.25</mn><mi>z</mi><mo>−</mo><mn>166757.2</mn><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, and the ideal three-dimensional paraboloid equation is determined to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mrow><mo>(</mo><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mrow><mo>)</mo></mrow><mo>/</mo><mn>555.25</mn><mo>−</mo><mn>300.33018</mn></mrow></semantics></math></inline-formula>. Moreover, the amount of the nodes and triangular reflection panels are calculated, which were determined to be 706 and 1325, respectively. The ratio reception of the working paraboloid and the datum sphere are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.434</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.3898</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively. The latter is calculated through a ray tracing simulation using the optical system modeling software LightTools.
first_indexed 2024-03-09T20:58:46Z
format Article
id doaj.art-dc5dc1b519dd497d99952e88178f7b2e
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T20:58:46Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-dc5dc1b519dd497d99952e88178f7b2e2023-11-23T22:15:43ZengMDPI AGSymmetry2073-89942022-01-0114225210.3390/sym14020252Active Control Model for the “FAST” Reflecting Surface Based on Discrete MethodsYanbo Wang0Yingchang Xiong1Jianming Hao2Jiaqi He3Yuchi Liu4Xinpeng He5Chang’an Dublin International College of Transportation, Chang’an University, Xi’an 710064, ChinaChang’an Dublin International College of Transportation, Chang’an University, Xi’an 710064, ChinaSchool of Highway, Chang’an University, Xi’an 710064, ChinaChang’an Dublin International College of Transportation, Chang’an University, Xi’an 710064, ChinaChang’an Dublin International College of Transportation, Chang’an University, Xi’an 710064, ChinaChang’an Dublin International College of Transportation, Chang’an University, Xi’an 710064, ChinaRadio telescopes are important for the development of society. With the advent of China’s Five-hundred-meter Aperture Spherical radio Telescope (FAST), adjusting the reflector panel to improve the reception ability is becoming an urgent problem. In this paper, an active control model of the reflector panel is established that considers the minimum sum of the radial offset of the actuator and the non-smoothness of the working paraboloid. Using the idea of discretization, the adjusted position of the main cable nodes, the ideal parabolic equation, and the expansion of each actuator are obtained by inputting the elevation and azimuth angle of the incident electromagnetic wave. To find the ideal parabola, a univariate optimization model is established, and the Fibonacci method is used to search for the optimal solution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi><mo>=</mo><mo>−</mo><mn>0.33018</mn></mrow></semantics></math></inline-formula> (offset in the direction away from the sphere’s center) and the focal diameter ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>=</mo><mn>0.4671</mn></mrow></semantics></math></inline-formula> of the parabolic vertex. The ideal two-dimensional parabolic equation is then determined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mn>555.25</mn><mi>z</mi><mo>−</mo><mn>166757.2</mn><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, and the ideal three-dimensional paraboloid equation is determined to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mrow><mo>(</mo><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mrow><mo>)</mo></mrow><mo>/</mo><mn>555.25</mn><mo>−</mo><mn>300.33018</mn></mrow></semantics></math></inline-formula>. Moreover, the amount of the nodes and triangular reflection panels are calculated, which were determined to be 706 and 1325, respectively. The ratio reception of the working paraboloid and the datum sphere are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.434</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.3898</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively. The latter is calculated through a ray tracing simulation using the optical system modeling software LightTools.https://www.mdpi.com/2073-8994/14/2/252radio telescopeleast square methodunivariate optimization modelthe idea of discretizationFibonacci method
spellingShingle Yanbo Wang
Yingchang Xiong
Jianming Hao
Jiaqi He
Yuchi Liu
Xinpeng He
Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods
Symmetry
radio telescope
least square method
univariate optimization model
the idea of discretization
Fibonacci method
title Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods
title_full Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods
title_fullStr Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods
title_full_unstemmed Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods
title_short Active Control Model for the “FAST” Reflecting Surface Based on Discrete Methods
title_sort active control model for the fast reflecting surface based on discrete methods
topic radio telescope
least square method
univariate optimization model
the idea of discretization
Fibonacci method
url https://www.mdpi.com/2073-8994/14/2/252
work_keys_str_mv AT yanbowang activecontrolmodelforthefastreflectingsurfacebasedondiscretemethods
AT yingchangxiong activecontrolmodelforthefastreflectingsurfacebasedondiscretemethods
AT jianminghao activecontrolmodelforthefastreflectingsurfacebasedondiscretemethods
AT jiaqihe activecontrolmodelforthefastreflectingsurfacebasedondiscretemethods
AT yuchiliu activecontrolmodelforthefastreflectingsurfacebasedondiscretemethods
AT xinpenghe activecontrolmodelforthefastreflectingsurfacebasedondiscretemethods