Stationary distribution and probability density function analysis of a stochastic Microcystins degradation model with distributed delay

A stochastic Microcystins degradation model with distributed delay is studied in this paper. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic system. Second, we derive a stochastic critical value $ R_0^s $ related to the basic reproduction number $ R_...

Full description

Bibliographic Details
Main Authors: Ying He, Yuting Wei, Junlong Tao, Bo Bi
Format: Article
Language:English
Published: AIMS Press 2024-01-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2024026?viewType=HTML
Description
Summary:A stochastic Microcystins degradation model with distributed delay is studied in this paper. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic system. Second, we derive a stochastic critical value $ R_0^s $ related to the basic reproduction number $ R_0 $. By constructing suitable Lyapunov function types, we obtain the existence of an ergodic stationary distribution of the stochastic system if $ R_0^s > 1. $ Next, by means of the method developed to solve the general four-dimensional Fokker-Planck equation, the exact expression of the probability density function of the stochastic model around the quasi-endemic equilibrium is derived, which is the key aim of the present paper. In the analysis of statistical significance, the explicit density function can reflect all dynamical properties of a chemostat model. To validate our theoretical conclusions, we present examples and numerical simulations.
ISSN:1551-0018