Biharmonic (ω, 2ω) ionization of atoms by elliptically-polarized light. Carving the photoelectron angular distributions
The biharmonic ( ω , 2 ω ) photoionization of atomic inner-shell electrons opens up new perspectives for studying nonlinear light–atom interactions at intensities in the transition regime from weak to strong-field physics. In particular, the control of the frequency and polarization of biharmonic be...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2022-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/ac9803 |
_version_ | 1797748795819163648 |
---|---|
author | S Fritzsche J Hofbrucker |
author_facet | S Fritzsche J Hofbrucker |
author_sort | S Fritzsche |
collection | DOAJ |
description | The biharmonic ( ω , 2 ω ) photoionization of atomic inner-shell electrons opens up new perspectives for studying nonlinear light–atom interactions at intensities in the transition regime from weak to strong-field physics. In particular, the control of the frequency and polarization of biharmonic beams enables one to carve the photoelectron angular distribution and to enhance the resolution of ionization measurements by the (simultaneous) absorption of photons. Apart from its quite obvious polarization dependence, the photoelectron angular distributions are sensitive also to the (relative) intensity, the phase difference and the temporal structure of the incoming beam components, both at resonant and nonresonant frequencies. Here, we describe and analyze several characteristic features of biharmonic ionization in the framework of second-order perturbation theory and (so-called) ionization pathways , as they are readily derived from the interaction of inner-shell electrons with the electric-dipole field of the incident beam. We show how the photoelectron angular distribution and elliptical dichroism can be shaped in rather an unprecedented way by just tuning the properties of the biharmonic field. Since such fields are nowadays accessible from high-harmonic sources or free-electron lasers, these and further investigations might help extract photoionization amplitudes or the phase difference of incoming beams. |
first_indexed | 2024-03-12T16:10:55Z |
format | Article |
id | doaj.art-dc606dc0cb44488daaa12209c4544823 |
institution | Directory Open Access Journal |
issn | 1367-2630 |
language | English |
last_indexed | 2024-03-12T16:10:55Z |
publishDate | 2022-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | New Journal of Physics |
spelling | doaj.art-dc606dc0cb44488daaa12209c45448232023-08-09T14:09:23ZengIOP PublishingNew Journal of Physics1367-26302022-01-01241010303110.1088/1367-2630/ac9803Biharmonic (ω, 2ω) ionization of atoms by elliptically-polarized light. Carving the photoelectron angular distributionsS Fritzsche0https://orcid.org/0000-0003-3101-2824J Hofbrucker1https://orcid.org/0000-0002-5917-3649Helmholtz-Institut Jena , D-07743 Jena, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH , D-64291 Darmstadt, Germany; Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena , D-07743 Jena, GermanyHelmholtz-Institut Jena , D-07743 Jena, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH , D-64291 Darmstadt, GermanyThe biharmonic ( ω , 2 ω ) photoionization of atomic inner-shell electrons opens up new perspectives for studying nonlinear light–atom interactions at intensities in the transition regime from weak to strong-field physics. In particular, the control of the frequency and polarization of biharmonic beams enables one to carve the photoelectron angular distribution and to enhance the resolution of ionization measurements by the (simultaneous) absorption of photons. Apart from its quite obvious polarization dependence, the photoelectron angular distributions are sensitive also to the (relative) intensity, the phase difference and the temporal structure of the incoming beam components, both at resonant and nonresonant frequencies. Here, we describe and analyze several characteristic features of biharmonic ionization in the framework of second-order perturbation theory and (so-called) ionization pathways , as they are readily derived from the interaction of inner-shell electrons with the electric-dipole field of the incident beam. We show how the photoelectron angular distribution and elliptical dichroism can be shaped in rather an unprecedented way by just tuning the properties of the biharmonic field. Since such fields are nowadays accessible from high-harmonic sources or free-electron lasers, these and further investigations might help extract photoionization amplitudes or the phase difference of incoming beams.https://doi.org/10.1088/1367-2630/ac9803biharmonic ionizationtwo-photon ionizationatomic structure theorycircular dichroismelliptical dichroismphotoelectron angular distribution |
spellingShingle | S Fritzsche J Hofbrucker Biharmonic (ω, 2ω) ionization of atoms by elliptically-polarized light. Carving the photoelectron angular distributions New Journal of Physics biharmonic ionization two-photon ionization atomic structure theory circular dichroism elliptical dichroism photoelectron angular distribution |
title | Biharmonic (ω, 2ω) ionization of atoms by elliptically-polarized light. Carving the photoelectron angular distributions |
title_full | Biharmonic (ω, 2ω) ionization of atoms by elliptically-polarized light. Carving the photoelectron angular distributions |
title_fullStr | Biharmonic (ω, 2ω) ionization of atoms by elliptically-polarized light. Carving the photoelectron angular distributions |
title_full_unstemmed | Biharmonic (ω, 2ω) ionization of atoms by elliptically-polarized light. Carving the photoelectron angular distributions |
title_short | Biharmonic (ω, 2ω) ionization of atoms by elliptically-polarized light. Carving the photoelectron angular distributions |
title_sort | biharmonic ω 2ω ionization of atoms by elliptically polarized light carving the photoelectron angular distributions |
topic | biharmonic ionization two-photon ionization atomic structure theory circular dichroism elliptical dichroism photoelectron angular distribution |
url | https://doi.org/10.1088/1367-2630/ac9803 |
work_keys_str_mv | AT sfritzsche biharmonicō2ōionizationofatomsbyellipticallypolarizedlightcarvingthephotoelectronangulardistributions AT jhofbrucker biharmonicō2ōionizationofatomsbyellipticallypolarizedlightcarvingthephotoelectronangulardistributions |