Numerical and Experimental Evaluation of Structural Changes Using Sparse Auto-Encoders and SVM Applied to Dynamic Responses

The present work evaluates the deep learning algorithm called Sparse Auto-Encoder (SAE) when applied to the characterization of structural anomalies. This study explores the SAE’s performance in a supervised damage detection approach to consolidate its application in the Structural Health Monitoring...

Full description

Bibliographic Details
Main Authors: Rafaelle Piazzaroli Finotti, Flávio de Souza Barbosa, Alexandre Abrahão Cury, Roberto Leal Pimentel
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/24/11965
Description
Summary:The present work evaluates the deep learning algorithm called Sparse Auto-Encoder (SAE) when applied to the characterization of structural anomalies. This study explores the SAE’s performance in a supervised damage detection approach to consolidate its application in the Structural Health Monitoring (SHM) field, especially when dealing with real-case structures. The main idea is to use the SAE to extract relevant features from the monitored signals and the well-known Support Vector Machine (SVM) to classify such characteristics within the context of an SHM problem. Vibration data from a numerical beam model and a highway viaduct in Brazil are considered to assess the proposed approach. In both analyzed examples, the efficiency of the implemented methodology achieved more than 99% of correct damage structural classifications, supporting the conclusion that SAE can extract relevant characteristics from dynamic signals that are useful for SHM applications.
ISSN:2076-3417