Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation
Alongside well-researched themes such as water and moisture, the service life and function of masonry veneers are often compromised by precipitation combined with poor design considerations, execution, and selection of materials. Little research has been carried out on the subject of the impact of m...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-08-01
|
Series: | Buildings |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-5309/7/3/70 |
_version_ | 1817987722925572096 |
---|---|
author | Fredrik Slapø Tore Kvande Noralf Bakken Marit Haugen Jardar Lohne |
author_facet | Fredrik Slapø Tore Kvande Noralf Bakken Marit Haugen Jardar Lohne |
author_sort | Fredrik Slapø |
collection | DOAJ |
description | Alongside well-researched themes such as water and moisture, the service life and function of masonry veneers are often compromised by precipitation combined with poor design considerations, execution, and selection of materials. Little research has been carried out on the subject of the impact of mortar consistency on masonry’s resistance to driving rain. Water-repellent (WR) impregnation is typically considered a quick fix when problems occur. Wall-panels of 1 m2 built with different flow table values for the mortar have been tested in a driving rain chamber, where both time-lapse videos and the measuring of penetrated water are used to evaluate performance. Subsequently, the panels were impregnated with the most common types of WR products and re-tested. The analysis shows that changing the mortar mix from dry to wet can decrease the penetration of driving rain by a factor of ten. The test results presented in this article show that mortar with low water content gives a porous interfacial transition zone (ITZ), thereby increasing the rate of water penetration. The tested WRs are found to be ineffective in increasing masonry’s resistance to high pressure driving rain. The results, combined with what is already known about WR treatments on masonry, call for careful consideration before applying such treatment. This proves especially true in countries with much driving rain followed by frequent freeze-thaw cycles. |
first_indexed | 2024-04-14T00:25:06Z |
format | Article |
id | doaj.art-dc65d9b36fce4555b94cd03bb4fe6b1d |
institution | Directory Open Access Journal |
issn | 2075-5309 |
language | English |
last_indexed | 2024-04-14T00:25:06Z |
publishDate | 2017-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Buildings |
spelling | doaj.art-dc65d9b36fce4555b94cd03bb4fe6b1d2022-12-22T02:22:47ZengMDPI AGBuildings2075-53092017-08-01737010.3390/buildings7030070buildings7030070Masonry’s Resistance to Driving Rain: Mortar Water Content and ImpregnationFredrik Slapø0Tore Kvande1Noralf Bakken2Marit Haugen3Jardar Lohne4Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwaySINTEF Building and Infrastructure at Department Architecture, Materials and Structures, NO-7465 Trondheim, NorwaySINTEF Building and Infrastructure at Department Architecture, Materials and Structures, NO-7465 Trondheim, NorwayDepartment of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayAlongside well-researched themes such as water and moisture, the service life and function of masonry veneers are often compromised by precipitation combined with poor design considerations, execution, and selection of materials. Little research has been carried out on the subject of the impact of mortar consistency on masonry’s resistance to driving rain. Water-repellent (WR) impregnation is typically considered a quick fix when problems occur. Wall-panels of 1 m2 built with different flow table values for the mortar have been tested in a driving rain chamber, where both time-lapse videos and the measuring of penetrated water are used to evaluate performance. Subsequently, the panels were impregnated with the most common types of WR products and re-tested. The analysis shows that changing the mortar mix from dry to wet can decrease the penetration of driving rain by a factor of ten. The test results presented in this article show that mortar with low water content gives a porous interfacial transition zone (ITZ), thereby increasing the rate of water penetration. The tested WRs are found to be ineffective in increasing masonry’s resistance to high pressure driving rain. The results, combined with what is already known about WR treatments on masonry, call for careful consideration before applying such treatment. This proves especially true in countries with much driving rain followed by frequent freeze-thaw cycles.https://www.mdpi.com/2075-5309/7/3/70driving rainmortar flowimpregnationclay brick masonryworkmanship techniques |
spellingShingle | Fredrik Slapø Tore Kvande Noralf Bakken Marit Haugen Jardar Lohne Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation Buildings driving rain mortar flow impregnation clay brick masonry workmanship techniques |
title | Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation |
title_full | Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation |
title_fullStr | Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation |
title_full_unstemmed | Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation |
title_short | Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation |
title_sort | masonry s resistance to driving rain mortar water content and impregnation |
topic | driving rain mortar flow impregnation clay brick masonry workmanship techniques |
url | https://www.mdpi.com/2075-5309/7/3/70 |
work_keys_str_mv | AT fredrikslapø masonrysresistancetodrivingrainmortarwatercontentandimpregnation AT torekvande masonrysresistancetodrivingrainmortarwatercontentandimpregnation AT noralfbakken masonrysresistancetodrivingrainmortarwatercontentandimpregnation AT marithaugen masonrysresistancetodrivingrainmortarwatercontentandimpregnation AT jardarlohne masonrysresistancetodrivingrainmortarwatercontentandimpregnation |