Augmented Multi-Component Recurrent Graph Convolutional Network for Traffic Flow Forecasting
Due to the periodic and dynamic changes of traffic flow and the spatial–temporal coupling interaction of complex road networks, traffic flow forecasting is highly challenging and rarely yields satisfactory prediction results. In this paper, we propose a novel methodology named the Augmented Multi-co...
Main Authors: | Chi Zhang, Hong-Yu Zhou, Qiang Qiu, Zhichun Jian, Daoye Zhu, Chengqi Cheng, Liesong He, Guoping Liu, Xiang Wen, Runbo Hu |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-01-01
|
Series: | ISPRS International Journal of Geo-Information |
Subjects: | |
Online Access: | https://www.mdpi.com/2220-9964/11/2/88 |
Similar Items
-
A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic Forecasting
by: Jiandong Bai, et al.
Published: (2021-07-01) -
STAGCN: Spatial–Temporal Attention Graph Convolution Network for Traffic Forecasting
by: Yafeng Gu, et al.
Published: (2022-05-01) -
AST-GCN: Attribute-Augmented Spatiotemporal Graph Convolutional Network for Traffic Forecasting
by: Jiawei Zhu, et al.
Published: (2021-01-01) -
MD-GCN: A Multi-Scale Temporal Dual Graph Convolution Network for Traffic Flow Prediction
by: Xiaohui Huang, et al.
Published: (2023-01-01) -
ADSTGCN: A Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional Network for Multi-Step Traffic Forecasting
by: Zhengyan Cui, et al.
Published: (2023-08-01)