A Special Family of <i>m</i>-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition

In this paper, we introduce a special family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">M</mi><msub><mi>σ</mi><mi>m&...

Full description

Bibliographic Details
Main Authors: Ibtisam Aldawish, Sondekola Rudra Swamy, Basem Aref Frasin
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/5/271
Description
Summary:In this paper, we introduce a special family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">M</mi><msub><mi>σ</mi><mi>m</mi></msub></msub><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>ν</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>φ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of the function family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>m</mi></msub></semantics></math></inline-formula> of <i>m</i>-fold symmetric bi-univalent functions defined in the open unit disc <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">D</mi></semantics></math></inline-formula> and obtain estimates of the first two Taylor–Maclaurin coefficients for functions in the special family. Further, the Fekete–Szegö functional for functions in this special family is also estimated. The results presented in this paper not only generalize and improve some recent works, but also give new results as special cases.
ISSN:2504-3110